• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 18
  • 16
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Formulation and evaluation of the biocompatibility of chitosan-dextran nanoparticles using a blood-brain barrier model

Ntwatwa, Ziphozihle January 2018 (has links)
Magister Scientiae - MSc (Medical BioSciences) / Central nervous system (CNS) infections are a therapeutic challenge. This is partly due to insufficient drug penetration across the blood-brain barrier (BBB). The BBB is a specialized, highly selective, metabolically active physiological barrier that regulates the movement of molecules into-and-out of the brain. As a result, large hydrophilic antibiotics such as colistin poorly penetrate to the CNS. Colistin is an old 'last line of defence'; a gram-negative antibiotic that has seen its clinical re-emergence due to the surge of multidrug resistance (MDR) infections. However, owing to systemic toxicity, increasing the intravenous dosage, in order to obtain higher CNS penetration, is inimical. Chitosan (CS) based nanoparticles (NPs) have been proposed as drug delivery systems across the BBB. CS is a cationic, natural polysaccharide that has the ability to be complexed with multivalent polymers like dextran (DS) thus forming CS-DS NPs. Naturally, CS has remarkable inherent features such as biocompatibility, biodegradability, ability to encapsulate poorly soluble drugs and it is favourable for endothelial cell uptake. However, polymeric NPs (even those derived from natural polysaccharides) have limited use due to toxicity. Considering the vital role of the BBB, toxicity would denote dire effects on CNS functioning. Therefore, treatment of CNS infections fringes on a deeper understanding of the interactions between drug delivery systems and the BBB.
12

Estudo experimental e teórico de um resfriador de água por adsorção usando energia solar / Experimental and theoretical study of an adsorption chiller water by using solar energy

Vieira, Herbert Melo 25 March 2013 (has links)
Made available in DSpace on 2015-05-08T14:59:46Z (GMT). No. of bitstreams: 1 ArquivoTotal.pdf: 9428315 bytes, checksum: 48c140981cf20867371ca9c0ebfcfec7 (MD5) Previous issue date: 2013-03-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The respective thesis aims to develop a cooling system that uses an adsorptive chiller for cooling water and subsequent use of this cold water for air conditioning environment, theoretically and experimentally verifying the performance of adsorption refrigeration system, these devices have several advantages, among them, the use of clean energy such as solar. Brazil is a country with high rates of stroke, with an average capacity 16-20 MJ / year / h, so it becomes quite conducive to harnessing this energy, and to be contributing to the reduction of fossil fuel consumption and reduction of harmful gases to the environment. The proposed system consists of flat solar collectors, which are used to convert solar energy into thermal, being last transferred to a heat transfer fluid that circulates through the collector which is then stored in a boiler, or a thermal fluid, to be used whenever required for heating the bed adsorptive a chiller, which is composed of bed adsorptive the finned annular ducts involved with the adsorbent (silica gel). Many studies have been developed with the aim of increasing the performance of these systems, these studies have focused primarily on increasing the mass transfer and heat of adsorption beds and using systems which run continuously through the use of two adsorption beds which work in different phases. Experimental studies in porous beds featuring different configurations were performed, observing thus which present higher rates adsorbent, and subsequently applied this setting in the construction of the porous bed adsorptive chiller. A computational model was developed theoretically allowing you to check your system's performance. / O respectivo trabalho de tese visa desenvolver um sistema de refrigeração que utiliza um chiller adsortivo para resfriamento de água e posterior uso desta água fria para climatização de ambiente, verificando teoricamente e experimentalmente o desempenho do sistema de refrigeração por adsorção, estes dispositivos apresentam várias vantagens, entre elas, o uso de energia limpa, como a solar. O Brasil é um país que apresenta grande índice de insolação, com uma capacidade média de 16 a 20 MJ/ano/h, desta forma torna-se bastante propício o aproveitamento desta energia, além de estar contribuindo para a redução do consumo de combustíveis fósseis e redução de gases nocivos ao meio-ambiente. O sistema proposto é composto por coletores solares planos, que são usados para converter a energia solar em térmica, sendo está última transferida para um fluido térmico que circula pelo coletor que posteriormente é armazenado em um boiler, podendo este fluido térmico, ser usado sempre que necessário para o aquecimento do leito adsortivo de um chiller, sendo este leito adsortivo composto por dutos aletados na forma anular envolvidos com o adsorvente (sílica gel). Muitos trabalhos vem sendo desenvolvidos com o intuito de aumentar o desempenho destes sistemas, estes estudos estão concentrados basicamente no aumento da transferência de massa e calor dos leitos adsortivos e utilização de sistemas que funcione continuamente através do uso de dois leitos adsortivos que trabalham em fases diferentes. Ensaios experimentais com leitos porosos apresentando configurações diferentes foram realizados, observando deste modo, qual apresentaria maiores taxas adsortivas, sendo posteriormente aplicada esta configuração na construção do leito poroso do chiller adsortivo. Um modelo computacional foi desenvolvido permitindo verificar teoricamente o desempenho do sistema.
13

Duloxetina : desenvolvimento e validação de métodos analíticos e estudos da estabilidade / Duloxetine : development and validation of analytical methods and stability studies

Gomes, Patricia January 2009 (has links)
A duloxetina (DLX) é um duplo inibidor seletivo balanceado da recaptação de serotonina e norepinefrina empregado para o tratamento do transtorno depressivo maior e para o manejo da dor neuropática diabética periférica. O objetivo deste estudo foi desenvolver e validar métodos analíticos para determinação de DLX em cápsulas e realizar estudos da estabilidade do fármaco. A substância usada como padrão de referência nas análises foi caracterizada por espectroscopia no infravermelho, ressonância magnética nuclear (RMN), calorimetria diferencial de varredura e espectrometria de massas. As análises qualitativas foram realizadas por cromatografia em camada delgada (CCD), espectrofotometria na região do ultravioleta (UV) e cromatografia líquida de alta eficiência (CLAE) permitindo a identificação do fármaco no produto farmacêutico. A espectrofotometria UV, CLAE e voltametria de redissolução catódica (CSV) foram validadas para determinação quantitativa de DLX em cápsulas. Estes métodos propostos foram específicos, robustos, lineares, precisos e exatos para determinação de DLX em microgrânulos de revestimento entérico. Estudos preliminares da estabilidade da DLX durante o desenvolvimento do método indicativo de estabilidade por CLAE demonstraram que o fármaco foi rapidamente degradado em meio ácido, na presença de peróxido de hidrogênio e de radiação a luz UVC, enquanto que este foi mais estável em meio alcalino. A cinética de degradação descreveu as mudanças na concentração da DLX em condição ácida e sob fotodegradação. A degradação ácida da DLX, em solução de HCl 0,1 M, mostrou cinética aparente de zero ordem e a fotodegradação demonstrou uma cinética aparente de primeira ordem. O produto de degradação principal observado na hidrólise ácida (PDA-14) foi analisado e isolado por CCD preparativa. Espectros de RMN-1H, RMN-13C e COSY foram avaliados e a estrutura do PDA-14 foi confirmada como 1-naftol. Esta substância produz efeitos citotóxicos e consequentemente o produto farmacêutico é uma cápsula de gelatina contendo microgrânulos com revestimento entérico para evitar a degradação ácida da DLX no estômago. / The duloxetine (DLX) is a double balanced selective serotonin and norepinephrinereuptake inhibitor employed for the treatment of major depressive disorder and for the management of diabetic peripheral neuropathic pain. The aim of this study was to develop and validate analytical methods to the determination of DLX in capsules and accomplish studies of this drug stability. The substance used as reference standard in the analysis was characterized by infrared spectroscopy, nuclear magnetic resonance (NMR), differential scanning calorimetry, and mass spectrometry. The qualitative analyses were performed by thin layer chromatography (TLC), ultraviolet spectrophotometry (UV), and high performance liquid chromatography (HPLC) allowing the identification of the drug in pharmaceutical dosage form. The UV spectrophotometry, HPLC, and cathodic stripping voltammetry (CSV) were validated for quantitative determination of the DLX in capsules. These proposed methods were specific, robust, linear, precise, and accurate to the determination of DLX in entericcoated pellets. Preliminary studies of DLX stability during the development of stability-indicating HPLC method demonstrated that the drug was rapidly degraded in acid medium, in the presence of hydrogen peroxide and light UVC radiation, while it was more stable in alkali medium. The kinetics of degradation described the concentration changes of DLX in acid condition and on photodegradation. The acid degradation of DLX in 0.1M HCl solution showed apparent zero-order kinetics and the photodegradation demonstrated apparent first-order kinetics. The main degradation product observed in acid hydrolysis (DP-14) was analyzed and isolated by TLC preparative. 1H NMR, 13C NMR and COSY spectra were evaluated and the structure of DP-14 was confirmed as 1-naphthol. This substance produces cytotoxic effects and consequently the finished pharmaceutical dosage form is a gelatin capsule containing enteric-coated pellets to avoid the acid degradation of DLX in the stomach.
14

Duloxetina : desenvolvimento e validação de métodos analíticos e estudos da estabilidade / Duloxetine : development and validation of analytical methods and stability studies

Gomes, Patricia January 2009 (has links)
A duloxetina (DLX) é um duplo inibidor seletivo balanceado da recaptação de serotonina e norepinefrina empregado para o tratamento do transtorno depressivo maior e para o manejo da dor neuropática diabética periférica. O objetivo deste estudo foi desenvolver e validar métodos analíticos para determinação de DLX em cápsulas e realizar estudos da estabilidade do fármaco. A substância usada como padrão de referência nas análises foi caracterizada por espectroscopia no infravermelho, ressonância magnética nuclear (RMN), calorimetria diferencial de varredura e espectrometria de massas. As análises qualitativas foram realizadas por cromatografia em camada delgada (CCD), espectrofotometria na região do ultravioleta (UV) e cromatografia líquida de alta eficiência (CLAE) permitindo a identificação do fármaco no produto farmacêutico. A espectrofotometria UV, CLAE e voltametria de redissolução catódica (CSV) foram validadas para determinação quantitativa de DLX em cápsulas. Estes métodos propostos foram específicos, robustos, lineares, precisos e exatos para determinação de DLX em microgrânulos de revestimento entérico. Estudos preliminares da estabilidade da DLX durante o desenvolvimento do método indicativo de estabilidade por CLAE demonstraram que o fármaco foi rapidamente degradado em meio ácido, na presença de peróxido de hidrogênio e de radiação a luz UVC, enquanto que este foi mais estável em meio alcalino. A cinética de degradação descreveu as mudanças na concentração da DLX em condição ácida e sob fotodegradação. A degradação ácida da DLX, em solução de HCl 0,1 M, mostrou cinética aparente de zero ordem e a fotodegradação demonstrou uma cinética aparente de primeira ordem. O produto de degradação principal observado na hidrólise ácida (PDA-14) foi analisado e isolado por CCD preparativa. Espectros de RMN-1H, RMN-13C e COSY foram avaliados e a estrutura do PDA-14 foi confirmada como 1-naftol. Esta substância produz efeitos citotóxicos e consequentemente o produto farmacêutico é uma cápsula de gelatina contendo microgrânulos com revestimento entérico para evitar a degradação ácida da DLX no estômago. / The duloxetine (DLX) is a double balanced selective serotonin and norepinephrinereuptake inhibitor employed for the treatment of major depressive disorder and for the management of diabetic peripheral neuropathic pain. The aim of this study was to develop and validate analytical methods to the determination of DLX in capsules and accomplish studies of this drug stability. The substance used as reference standard in the analysis was characterized by infrared spectroscopy, nuclear magnetic resonance (NMR), differential scanning calorimetry, and mass spectrometry. The qualitative analyses were performed by thin layer chromatography (TLC), ultraviolet spectrophotometry (UV), and high performance liquid chromatography (HPLC) allowing the identification of the drug in pharmaceutical dosage form. The UV spectrophotometry, HPLC, and cathodic stripping voltammetry (CSV) were validated for quantitative determination of the DLX in capsules. These proposed methods were specific, robust, linear, precise, and accurate to the determination of DLX in entericcoated pellets. Preliminary studies of DLX stability during the development of stability-indicating HPLC method demonstrated that the drug was rapidly degraded in acid medium, in the presence of hydrogen peroxide and light UVC radiation, while it was more stable in alkali medium. The kinetics of degradation described the concentration changes of DLX in acid condition and on photodegradation. The acid degradation of DLX in 0.1M HCl solution showed apparent zero-order kinetics and the photodegradation demonstrated apparent first-order kinetics. The main degradation product observed in acid hydrolysis (DP-14) was analyzed and isolated by TLC preparative. 1H NMR, 13C NMR and COSY spectra were evaluated and the structure of DP-14 was confirmed as 1-naphthol. This substance produces cytotoxic effects and consequently the finished pharmaceutical dosage form is a gelatin capsule containing enteric-coated pellets to avoid the acid degradation of DLX in the stomach.
15

Elektrochemická analýza RNA: Vývoj metódy vhodnej pre charakterizáciu produktov neenzymatickej polymerácie cyklických nukleosid monofosfátov za podmienok modelujúcich prebiotické prostredie / Electrochemical analysis of RNA: development of a method suitable for the characterization of products of non-enzymatic polymerization of cyclic nucleoside monophosphates under conditions modeling pr

Hesko, Ondrej January 2019 (has links)
This thesis focuses on the optimazation of the electrochemical method, which characterizes products of untemplated nonenzymatic polymerization of 3',5' -cyclic guanosine monophosphate (cGMP) under conditions modeling prebiotic environment. An adsorptive transfer stripping techniques on carbon electrode and gel electrophoresis were used. The method was optimized on the model system of oligonucleotides located in solution of cGMP on carbon electrode, where DNA and RNA adsorb. This technique allows simple removing of interfering substances such as cGMP, which are not present in the original sample, but they do not adsorb on the surface of electrode or they adsorb weaker than oligonucleotides or polynucleotides. Analyses are based on the selective desorption of cGMP from the surface of the carbon electrode by the chemical and physical methods before the measurement of linear voltammetry itself. Detergents, such as SDS, Tween 20 and Triton x-100 with different concentrations and electrostatic repulsions of cGMP with different negative potentials on the carbon electrode were used for the selective desorption of cGMP. The selective desorption of cGMP was observed for all detergents and inserted negative potentials. Used methods were compared and the most effective detergent for selective desorption of cGMP was SDS. Desorption of oligonucleotides was minimalized by inserted positive potential on washed carbon electrode in 0,01% SDS in basic medium. This optimized method was used on electrochemical analysis of preliminary samples of untemplated nonenzymatic polymerization of 3',5' -cGMP and compared to the analysis of gel electrophoresis.
16

Optimization of Nonadsorptive Polymerized Polyethylene Glycol Diacrylate as a Material for Microfluidics and Sensor Integration

Rogers, Chad 01 March 2015 (has links) (PDF)
Microfluidics is a continually growing field covering a wide range of applications, such as cellular analysis, biomarker quantification, and drug discovery; but in spite of this, the field of microfluidics remains predominately academic. New materials are pivotal in providing tailored properties to improve device integration and decrease prototype turnaround times. In biosensing, nonspecific adsorption in microfluidic systems can deplete target molecules in solution and prevent analytes, especially those at low concentrations, from reaching the detector. Polyethylene glycol diacrylate (PEGDA) mixed with photoinitiator forms, on exposure to ultraviolet (UV) radiation, a polymer with inherent resistance to nonspecific adsorption. Optimization of the polymerized PEGDA (poly-PEGDA) formula imbues this material with some of the same properties, including optical clarity, water stability, and low background fluorescence, that makes polydimethylsiloxane (PDMS) a widely used material for microfluidics. Poly-PEGDA demonstrates less nonspecific adsorption than PDMS over a range of concentrations of flowing fluorescently tagged bovine serum albumin solutions, and poly-PEGDA has greater resistance to permeation by small hydrophobic molecules than PDMS. Poly-PEGDA also exhibits long-term (hour scale) resistance to nonspecific adsorption compared to PDMS when exposed to a low (1 μg/mL) concentration of a model adsorptive protein. Electrophoretic separations of amino acids and proteins resulted in symmetrical peaks and theoretical plate counts as high as 4 × 105/m. Pneumatically actuated, non-elastomeric membrane valves fabricated from poly-PEGDA have been characterized for temporal response, valve closure, and long-term durability. A ∼100 ms valve opening time and a ∼20 ms closure time offer valve operation as fast as 8 Hz with potential for further improvement. Comparison of circular and rectangular valve geometries indicates that the surface area for membrane interaction in the valve region is important for valve performance. After initial fabrication, the fluid pressure required to open a closed circular valve is ∼50 kPa higher than the control pressure holding the valve closed. However, after ∼1000 actuations to reconfigure polymer chains and increase elasticity in the membrane, the fluid pressure required to open a valve becomes the same as the control pressure holding the valve closed. After these initial conditioning actuations, poly-PEGDA valves show considerable robustness with no change in effective operation after 115,000 actuations.Often, localized areas of surface functionalization are desired in biosensing, necessitating site-specific derivatization. Integration of poly-PEGDA with different substrates, such as glass, silicon, or electrode-patterned materials, allows for broad application in biosensing and microfluidic devices. Deposition of 3-(trimethoxysilyl) propyl methacrylate or (3-acryloxypropyl) dimethylmethoxysilane onto these substrates makes bonding to poly-PEGDA possible under UV exposure. Primary deposition of (3-acryloxypropyl) dimethylmethoxysilane, followed by photolithographic patterning, allows for silane removal through HF surface etching in the exposed areas and subsequent deposition of 3 aminopropyldiisopropylethoxysilane on the etched regions. Fluorescent probes are used to evaluate surface attachment methods. Primary attachment via reaction of Alexa Fluor 488 TFP ester to the patterned aminosilane demonstrates excellent fluorescent signal. Initial results with glutaraldehyde were demonstrated but require more optimization before this method for secondary attachment is viable. Fabrication of 3D printed microfluidic devices with integrated membrane-based valves is performed with a low-cost, commercially available stereolithographic 3D printer and a custom PEGDA resin formulation tailored for low non-specific protein adsorption. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 µm wide and 250 µm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 µm designed (210 µm actual) diameters. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations. Poly-PEGDA is a versatile material for microfluidic applications ranging from electrophoretic separations, valve implementation, and heterogeneous material integration. Further improvements in PEGDA resin formulation, in combination with a UV source 3D printer, will provide poly-PEGDA devices that are not only rapidly fabricated (<40 min per device), but that also include pumps and valves and are usable with a variety of detection methods, such as laser-induced fluorescence and immunoassays, for broad application in biosensing.
17

A Comparison of the Recovery of THC from Oral Fluids Using Glass Versus Plastic Filter Vials

Aldhizer, Alexis L. 12 August 2022 (has links)
No description available.
18

Application of Thermogravimetric Analysis (TGA) Technique on Adsorption Capacity and Adsorption and Desorption Kinetics of Sulfur-impregenated Activated Carbon Saturated with Gaseous Mercury Chloride

Chen, Wei-chin 09 July 2010 (has links)
The objective of this study is to investigate the influence of sulfur compounds (S and Na2S) for powdered activated carbon derived from carbon black of pyrolyzed waste tires (CPBAC). Besides, this study investigated the distribution of impregnated sulfur in the inner pores of activated carbon and its effected on the specific surface area and pore size distribution. This study investigated the fundamental mechanisms by analysis of thermodynamic properties and to establish the kinetic models for the adsorption/desorption of HgCl2 by/from sulfur impregnated CBPAC. Furthermore, this study investigated the adsorptive and desorption capacity of HgCl2 onto CPBAC via thermogravimetric analysis (TGA). Experimental results indicated that the specific surface area of sulfur impregnated CBPAC with elemental S (S0) was larger than sulfur impregnated CBPAC with Na2S. Besides, the sulfur content of sulfur impregnated CBPAC increased with increasing the surface area of CBPAC under the same impregnated temperature. And, the adsorptive capacity of CBPAC increased with the increase of influent HgCl2 concentration and surface area of the activated carbon. According to the experimental results of the adsorption capacity under the differential sulfur content, its indicated that the affection of sulfur content for adsorption capacity of HgCl2 was much than HgCl2 concentration and surface area of the activated carbon. The desorption energys were 266 and 282 kJ/mole for HgCl2 desorption from saturated CBPAC-S0 and CBPAC-Na2S, respectively. The results showed the process of HgCl2 adsorption onto CBPAC was in favor of a physisorbed state of HgCl2 at the adsorption temperature of 150 oC but the process of HgCl2 adsorption onto CBPAC which impregated was in favor of a chemisorbed state of HgCl2 at the adsorption of 150 oC. The value of ∆G for CBPAC at the adsorption temperature of 30 ~150 oC were ranged from -15.28 kJ/mole to -26.63 kJ/mole. The value of ∆G for CBPAC-S0 at the adsorption temperature of 30~150 oC ranged from -23.45 kJ/mole to -32.09 kJ/mole. The value of ∆G for CBPAC-Na2S at the adsorption temperature of 30~150 oC ranged from -22.84 kJ/mole to -32.72 kJ/mole. The results showed negative values of ∆G confirmed the feasibility of adsorption process and the spontaneous nature for the adsorption of HgCl2. The value of ∆H for CBPAC at the adsorption temperature of 30 ~150 oC ranged from -35.58 kJ/mole to -35.82 kJ/mole. The value of ∆H for CBPAC-S0 at the adsorption temperature of 30 ~150 oC ranged from -38.07 kJ/mole to -52.49 kJ/mole. The value of ∆H for CBPAC-Na2S at the adsorption temperature of 30~150 oC was -37.45 kJ/mole to -53.12 kJ/mole. A negative ∆H suggested that the adsorption of HgCl2 is an exothermic process. Besides, the adsorptive behavior of HgCl2 for two activated carbons (CBPAC-Na2S and CBPAC-S0) at high temperature (110 ¢J and 150 ¢J ) was the same chemical reaction mechanism due to the same ∆H. Besides, the results of model simulation indicated that modified adsorption kinetic model based on pore diffusion scheme developed in this study could successfully simulate the transport and adsorption of HgCl2 by considering the chemical reaction within the inner pores of carbon grains at 150 oC.
19

Adsorptive separations on titanosilicate by breakthrough analysis

Kim, Ji hong Unknown Date
No description available.
20

Adsorptive Removal of Refractory Sulphur and Nitrogen Compounds from Transportation Fuels

Iravani, Amir 06 November 2014 (has links)
The reduction of sulphur in transportation fuel has gained significant importance as the regulatory agencies worldwide react to air quality concerns and the impact of sulphur oxides on the environment. The overall objective of this research was to identify, develop and characterize, based on underlying scientific principles, sorbents that are effective in removal of refractory sulphur compounds from fuel through the process of selective adsorption. It was determined that impregnation of powdered activated carbon with a transition metal (TM) significantly boosted the adsorption performance of the activated carbon. It is hypothesized that the impregnation resulted in the formation of new adsorptive sites that strongly interacted with the lone pairs of electrons on sulphur and nitrogen while having minor impact on the existing oxygen functional groups on the surface of the activated carbon. The percent loading of the TM was determined through wet adsorption study. The best performing sorbent was shown to have maximum adsorption capacities of approximately 1.77 and 0.76 mmol-S/g-sorbent for DBT and 4,6 DMDBT, respectively, with approximately 100% regenerability through solvent wash and thermal treatment. On average, the PTM impregnation showed approximately 137% increase in adsorption capacity of the activated carbon. The sorbent also has good adsorption capacities for organo-nitrogen compounds (i.e., quinoline and carbazole) and a low selectivity towards aromatics, which is desired in adsorptive desulphurization. The surface morphology of the activated carbon, the oxygen functional groups on the surface of the activated carbon, as well as strong (chemisorption) interaction between the TM???s partly vacant and far reaching ???d??? orbital and lone pair electrons on sulphur and nitrogen are considered to be the main contributing factors to the observed enhancement. It was established in this study that the adsorption isotherms of the impregnated activated carbons best fit Sips isotherm equation, which is a combination of the Langmuir and Freundlich equations. This finding fits well with our initial hypothesis regarding the introduction of new adsorptive sites as a result of TM impregnation and that the sites did not fit well with Langmuir???s monolayer and uniform adsorption mechanism. A kinetic study of the sulphur adsorption using a flow reactor showed a good fit with pseudo second order kinetic model, indicative of an adsorption that is highly dependent on the concentration of available sites on the surface of the sorbent. On average, as expected, the TM impregnated ACC exhibited a higher initial rate of adsorption. The adsorption onto TM sites tends to be more exothermic than adsorption (mainly physisorption) on activated carbon. Therefore, more thermodynamically favoured chemisorption is expected to occur more rapidly than physisorption. It was determined that on average, the initial adsorption rate does not change significantly with temperature while the sulphur adsorption capacity decreases with increase in temperature. It is postulated that the increase in temperature increases surface diffusivity but impedes diffusion flux. The impediment of the diffusion flux will result in reduction in adsorbed quantity. It was also shown that the intra-particle diffusion exists in the adsorption of DBT on TM impregnated activated carbon, however, it is not likely that the overall adsorption is controlled or noticeable impacted by it. As the temperature of the reactor increases the Weber-Morris intra-particle diffusion plot moves away from the origin, and thus intra-particle diffusion becomes less of a controlling mechanism. This further confirms the fact that the boundary layer (i.e., surface diffusion) and potentially adsorptive interactions at the surface are the dominating mechanisms in the sulphur adsorption onto TM impregnated activated carbon. It was determined that the distribution of TM species on the surface of the activated carbon is relatively inhomogeneous, with some areas showing well dispersed TM species while other areas showing large clusters. Different impregnation method that can improve dispersion on the surface may significantly enhance adsorption performance of the sorbent. Furthermore, in this study impregnation of activated carbon using several other transition metals were examined. It was determined that other less expensive transition metals can also improve the adsorption performance of the activated carbon. Further study on less expensive options for impregnating the activated carbon may be beneficial.

Page generated in 0.054 seconds