• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization and Modeling of FPGA Circuitry in Advanced Process Technology

Chiasson, Charles 21 November 2013 (has links)
We develop a new fully-automated transistor sizing tool for FPGAs that features area, delay and wire load modeling enhancements over prior work to improve its accuracy in advanced process nodes. We then use this tool to investigate a number of FPGA circuit design related questions in a 22nm process. We find that building FPGAs out of transmission gates instead of the currently dominant pass-transistors, whose performance and reliability are degrading with technology scaling, yields FPGAs that are 15% larger but are 10-25% faster depending on the allowable level of "gate boosting''. We also show that transmission gate FPGAs with a separate power supply for their gate terminal enable a low-voltage FPGA with 50% less power and good delay. Finally, we show that, at a possible cost in routability, restricting the portion of a routing channel that can be accessed by a logic block input can improve delay by 17%.
2

Optimization and Modeling of FPGA Circuitry in Advanced Process Technology

Chiasson, Charles 21 November 2013 (has links)
We develop a new fully-automated transistor sizing tool for FPGAs that features area, delay and wire load modeling enhancements over prior work to improve its accuracy in advanced process nodes. We then use this tool to investigate a number of FPGA circuit design related questions in a 22nm process. We find that building FPGAs out of transmission gates instead of the currently dominant pass-transistors, whose performance and reliability are degrading with technology scaling, yields FPGAs that are 15% larger but are 10-25% faster depending on the allowable level of "gate boosting''. We also show that transmission gate FPGAs with a separate power supply for their gate terminal enable a low-voltage FPGA with 50% less power and good delay. Finally, we show that, at a possible cost in routability, restricting the portion of a routing channel that can be accessed by a logic block input can improve delay by 17%.

Page generated in 0.082 seconds