Spelling suggestions: "subject:"aeroelastic""
61 |
Circuitos piezelétricos passivos, semi-passivos, ativos e híbridos e suas aplicações para problemas aeroelásticos / Passive, semi-passive, active and hybrid piezoelectric circuits and their application in aeroelastic problemsSilva, Tarcísio Marinelli Pereira 08 August 2014 (has links)
Desde o final da década de 1980 até os dias atuais a utilização de materiais inteligentes em sistemas de controle de vibrações e em problemas de conversão de energia mecânica em energia elétrica tem sido amplamente investigada. Entre os materiais inteligentes destacamos os piezelétricos, apresentando acoplamento entre os domínios elétrico e mecânico. Em casos de controle passivo de vibrações utiliza-se o efeito piezelétrico direto e a energia de vibração é dissipada em um circuito elétrico passivo. Apesar de não utilizarem uma fonte externa de energia, a faixa de frequências onde o controlador passivo tem bom desempenho é limitada em relação aos controladores ativos. Em problemas de controle ativo de vibrações o efeito piezelétrico inverso é utilizado. Neste caso, uma tensão elétrica de controle é aplicada aos piezelétricos para a atenuação de vibrações. Os sistemas híbridos de controle (ativo-passivo) associam circuitos passivos e uma fonte de tensão elétrica. Nesse caso, os efeitos piezelétricos direto e inverso são utilizados simultaneamente. Espera-se que a parte ativa do sistema híbrido necessite de menor potência elétrica de atuação (se comparado com um controlador ativo) além do sistema híbrido proporcionar melhor resposta estrutural que o sistema passivo isoladamente. Entretanto, os controladores ativos e híbridos apresentam desvantagens relacionadas com complexidades de uma lei de controle, necessidade de equipamentos externos e podem exigir elevada potência de atuação. Os controladores semi-passivos surgiram como uma alternativa aos pontos negativos dos controladores passivos, ativos e híbridos. Uma técnica semi-passiva chamada SSD (synchronized switch damping) consiste no chaveamento do material piezelétrico entre a condição de circuito aberto e a condição de curto-circuito (SSDS) ou a uma indutância (SSDI), em momentos específicos da vibração da estrutura. Em geral, a conversão eletromecânica de energia é amplificada assim como o efeito shunt damping. Dessa forma, os circuitos semi-passivos, assim como os passivos, têm sido utilizados tanto como controladores de vibração quanto em problemas de coleta piezelétrica de energia. O objetivo deste trabalho é avaliar o desempenho de controladores piezelétricos passivos, semi-passivos, ativos e híbridos na atenuação de vibrações e também em problemas aeroelásticos. O modelo piezoaeroelástico é obtido com um modelo por elementos finitos (placa de Kirchhoff) eletromecanicamente acoplado que associado a um modelo aerodinâmico não-estacionário (método de malha de dipolos) resulta um modelo piezoaeroelástico. Casos de excitação harmônica de base, entrada impulsiva e também condição de flutter são estudados. / From the late 1980s until the present date, the use of smart materials as actuators in vibration control systems and as conversers of mechanical energy into electricity has been widely investigated. Among these smart materials, the piezoelectric ones stand out, presenting a coupling between the electrical and mechanical domain. In passive vibration control, the direct piezoelectric effect is used and vibration energy is dissipated (or harvested) in a passive circuit. Although no external power source is required, the frequency bandwidth in which passive controllers have good performance is limited when compared to active controllers. In active vibration control problems, the inverse piezoelectric effect is used. In this work, a voltage source is applied on the piezoceramic patches in order to attenuate vibration. Hybrid (active-passive) vibration controllers combine passive shunt circuits with the voltage source. In this case, the direct and inverse piezoelectric effects are used simultaneously. It is expected that the active part of the hybrid system will require less energy (when compared to an active controller) and a better structural response will be obtained than the purely passive system. Nevertheless, the active and hybrid controllers present disadvantages such as complexity of a control law, require external equipment and potentially require large amounts of energy. The semi-passive controllers are a recent alternative to the drawbacks of passive, active and hybrid controllers. A semi-passive technique called SSD (synchronized switch damping) consists of using an electronic switch that the piezoelectric element is briefly switched to an electrical shunt-circuit that can be a simple short-circuit (SSDS), or a small inductance (SSDI) at specific times in the structure\'s vibration cycle (Mohammadi, 2008). In general, the electromechanical energy conversion is enhanced as well as the shunt effect damping. Therefore, the switching techniques, as well as the passive circuits, have been used both in vibration control problems and in piezoelectric energy harvesting problems. The goal of this work is to assess the performance of passive, semi-passive, active and hybrid piezoelectric controllers to attenuate vibration in aeroelastic problems. The aeroelastic model is obtained by combining an electromechanically coupled finite element model (Kirchhoff\'s plate) with an unsteady aerodynamic models (the doublet-lattice method and Roger\'s model). The case studies are carried out on an elastic wing response to a base excitation, impulse force, and the flutter condition.
|
62 |
Simulation of 3-dimensional aeroelastic effects in turbomachinery cascadesMcBean, Ivan William, 1974- January 2002 (has links)
Abstract not available
|
63 |
Effect of wing flexibility on aircraft flight dynamicsQiao, Yuqing 02 1900 (has links)
The purpose of this thesis is to give a preliminary investigation into the effect of wing deformation on flight dynamics. The candidate vehicle is FW-11 which is a flying wing configuration aircraft with high altitude and long endurance characteristics. The aeroelastic effect may be significant for this type of configuration. Two cases, the effect of flexible wing on lift distribution and on roll effectiveness during the cruise condition with different inertial parameters are investigated.
For the first case, as the wing bending and twisting depend on the interaction between the wing structural deflections and the aerodynamic loads, the equilibrium condition should be calculated. In order to get that condition, mass, structure characteristics and aerodynamic characteristics are estimated first. Then load model and aerodynamic model are built. Next the interaction calculation program is applied and the equilibrium condition of the aircraft is calculated. After that, effect of wing flexibility on lift parameters is investigated. The influence of CG, location of lift and location of flexural axis are investigated.
The other case is to calculate the transient roll rate response and estimate the rolling effectiveness of flexible aircraft, and compared with the rigid aircraft’s. A pure roll model is built and derivatives both for the rigid wing and the flexible wing are estimated. It has been found that flexible wing leads to the loss of control effectiveness, even cause reversal when reduces the structure natural frequency. The influence of inertia data for flexible roll is also investigated.
|
64 |
A Methodology for Aeroelastic Constraint Analysis in a Conceptual Design EnvironmentDe Baets, Peter Wilfried Gaston 12 April 2004 (has links)
The research examines how the Bi-Level Integrated System Synthesis decomposition technique can be adapted to perform as the conceptual aeroelastic design tool. The study describes a comprehensive solution of the aeroelastic coupled problem cast in this decomposition format and implementation in an integrated framework. The method is supported by application details of a proof-of-concept high speed vehicle. Physics-based codes such as finite element and an aerodynamic panel method are used to model the high-definition geometric characteristics of the vehicle. A synthesis and sizing code was added to referee the conflicts that arise between the two disciplines.
This research's novelty lies in four points. First is the use of physics-based tools at the conceptual design phase to calculate the aeroelastic properties. Second is the projection of flutter and divergence velocity constraint lines in a power loading versus wing loading graph. The mapping of such constraints in a designer's familiar format is a valuable tool for fast examination of the design space. Third is the improvement of the aeroelastic assessment given the time allotted. Until recently, because of extensive computational and time requirements, aeroelasticity was only assessed at the preliminary design phase. This research illustrates a scheme whereby, for the first time, aeroelasticity can be assessed at the early design formulation stages. Forth, this assessment allowed to verify the impact of changing velocity, altitude, and angle of attack and identify robust design space with these three mission properties.
The method's application to the quiet supersonic business jet gave a delta shaped wing for the supersonic speed regime. A subsonic case resulted in a high aspect ratio wing. The scaling approach allowed iso-flutter and iso-divergence lines to be plotted. The main effects of velocity, altitude, and angle of attack on these iso-lines were also discussed, as was the identification of robust design space. The response surface surrogate models allowed convergence of the system optimization but questions were posed as to the accuracy of these quadratic models. Other future improvements include the addition of more disciplines and more detailed models.
|
65 |
Investigation of a stop-fold tiltrotorBosworth, Jeff. January 2009 (has links)
Thesis (M. S.)--Aerospace Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Hodges, Dewey; Committee Member: Bauchau, Olivier; Committee Member: Sankar, Lakshmi. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
66 |
Aeroelastic optimization of a composite tilt rotorSoykasap, Omer 05 1900 (has links)
No description available.
|
67 |
A reduced-order meshless energy (ROME) model for the elastodynamics of mistuned bladed disksFang, Chih 05 1900 (has links)
No description available.
|
68 |
Tiltrotor multidisciplinary optimizationStettner, Martin 08 1900 (has links)
No description available.
|
69 |
Improved testing methods for measurement of extension-twist couplingSchliesman, Michael Dean 05 1900 (has links)
No description available.
|
70 |
Aeroelastic Instabilities due to Unsteady AerodynamicsBesem, Fanny Maud January 2015 (has links)
<p>One of the grand challenges faced by industry is the accurate prediction of unsteady aerodynamics events, including frequency lock-in and forced response. These aeromechanical incidents occurring in airplane engines and gas turbines can cause high-amplitude blade vibration and potential failure of the engine or turbine. During the last decades, the development of computational fluid dynamics has allowed the design and optimization of complex components while reducing the need for expensive engine testing. However, the validation of frequency lock-in and forced response numerical results with experimental data is very incomplete. Despite tremendous advances in computational capabilities, industry is still looking to validate design tools and guidelines to avoid these potentially costly aeroelastic events early in the design process. </p><p>The research efforts presented in this dissertation investigate the aeroelastic phenomena of frequency lock-in and forced response in turbomachinery. First, frequency lock-in is predicted for two structures, namely a two-dimensional cylinder and a single three-dimensional airfoil, and the results are compared to experimental data so that the methods can be extended to more complex structures. For these two simpler structures, a frequency domain harmonic balance code is used to estimate the natural shedding frequency and the corresponding lock-in region. Both the shedding frequencies and the lock-in regions obtained by an enforced motion method agree with experimental data from previous literature and wind tunnel tests. Moreover, the aerodynamic model of the vibrating cylinder is coupled with the structural equations of motion to form a fluid-structure interaction model and to compute the limit-cycle oscillation amplitude of the cylinder. The extent of the lock-in region matches the experimental data very well, yet the peak amplitude is underestimated in the numerical model. We demonstrate that the inclusion of the cylinder second degree of freedom has a significant impact on the cylinder first degree of freedom amplitude. Moreover, it is observed that two harmonics need to be kept in the equations of motion for accurate prediction of the unsteady forces on the cylinder. </p><p>The second important topic covered is a comprehensive forced response analysis conducted on a multi-stage axial compressor and compared with the initial data of the largest forced response experimental data set ever obtained in the field. Both a frequency domain and a time domain codes are used. The steady-state and time-averaged aerodynamic performance results compare well with experimental data, although losses are underestimated due to the lack of secondary flow paths and fillets in the model. The use of mixing planes in the steady simulations underpredicts the wakes by neglecting the important interactions between rows. Therefore, for similar cases with significant flow separation, the use of a decoupled method for forced response predictions cannot yield accurate results. A full multi-row transient analysis must be conducted for accurate prediction of the wakes and surface unsteady pressures. Finally, for the first time, predicted mistuned blade amplitudes are compared to mistuned experimental data. The downstream stator is found to be necessary for the accurate prediction of the modal forces and vibration amplitudes. The mistuned rotor is shown to be extremely sensitive to perturbations in blade frequency mistuning, aerodynamic asymmetry, and excitation traveling wave content. Since this dissertation presents the initial results of a five-year research program, more research will be conducted on this compressor to draw guidelines that can be used by aeromechanical engineers to safely avoid forced response events in the design of jet engines and gas turbines.</p> / Dissertation
|
Page generated in 0.0718 seconds