• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mixed mode creep/fatigue crack growth

Chambers, A. C. January 1989 (has links)
No description available.
2

A Low Order Aerodynamic Model of Embedded Total Temperature Probes

Heersema, Nicole Amanda 25 November 2014 (has links)
Measurement of the total conditions downstream of fans is of primary importance to aeroengine development. Historically, these measurements have been acquired with the use of traditional total condition probes mounted to the guidevanes or engine cowling; however, such a setup can have significant impact on the flow. Difficulties in obtaining direct measurements with traditional total conditions probes have led to the development of an embedded shielded probe. In order to support this development, a model was desired to be developed that accurately modelled the recovery using a low-order analysis that could be implemented quickly. The creation and validation of such a model is the primary focus of the present research. Of secondary interest is to prove the hypothesis that aerodynamics will dominate the recovery of such a sensor. Based around the calculations for recovery used by Moffat, the model uses a linear vortex panel method to calculate the aerodynamics of the sensor. Higher order corrections were also suggested to improve the accuracy of the model. Several of these corrections, which take into account compressibility and variance of individual recovery factors, were included in the final model. Other corrections, such as improved paneling for the panel method and the inclusion of pitch angle have not been incorporated at this time but are part of an ongoing effort to improve and expand the capabilities of the model. Model validation was performed in three steps, starting with comparing the calculations for the recovery without aerodynamics to values present in literature for traditional Shielded probes. The aerodynamics and the panel method used to generate them were validated separately using the widely available program Xfoil. Validation of the combined model could only be accomplished via experimental testing. Several sensors, based on the predictions of the model, were 3D printed for use in experimental testing. Three key geometric parameters were identified and varied within the limits of interest to create the set of sensors tested. The purpose of this was two-fold. One: validate the model or identify key missing aerodynamic effects for inclusion. Two: prove the secondary hypothesis that aerodynamics will dominate the recovery. Testing was performed at a range of Mach numbers, yaw angles, and pitch angles commonly present in aeroengines. The data collected for model validation were simultaneously used to prove the hypothesis that aerodynamic effects dominated the recovery. This hypothesis was concluded to be true for the range of parameters tested. The model was determined to be valid for the range of parameters tested, although with the caveat that not all aerodynamic effects are fully accounted for and physical testing or CFD analysis is advised to verify results once design parameters have been narrowed down sufficiently. Further refinement of the experimental data and investigation of the aerodynamic effects are the subject of further study. / Master of Science
3

Fatigue studies under constant and variable amplitude loading in MMCs

Rodopoulos, C. A. January 1996 (has links)
No description available.
4

Identification of squeeze-film damper bearings for aeroengine vibration analysis

Groves, Keir Harvey January 2011 (has links)
The accuracy of rotordynamic analysis of aeroengine structures is typically limited by a trade-off between the capabilities and the computational cost of the squeeze-film damper (SFD) bearing model used. Identification techniques provide a means of efficiently implementing complex nonlinear bearing models in practical rotordynamic analysis; thus facilitating design optimisation of the SFD and the engine structure. This thesis considers both identification from advanced numerical models and identification from experimental tests. Identification from numerical models is essential at the design stage, where rapid simulation of the dynamic performance of a variety of designs is required. Experimental identification is useful to capture effects that are difficult to model (e.g. geometric imperfections). The main contributions of this thesis are: • The development of an identification technique using Chebyshev polynomial fits to identify the numerical solution of the incompressible Reynolds equation. The proposed method manipulates the Reynolds equation to allow efficient and accurate identification in the presence of cavitation, the feed-groove, feed-ports, end-plate seals and supply pressure. • The first-ever nonlinear dynamic analysis on a realistically sized twin-spool aeroengine model that fulfills the aim of taking into account the complexities of both structure and bearing model while allowing the analysis to be performed, in reasonable time frames, on a standard desktop computer. • The introduction and validation of a nonlinear SFD identification technique that uses neural networks trained from experimental data to reproduce the input-output function governing a real SFD. Numerical solution of the Reynolds equation, using a finite difference (FD) formulation with appropriate boundary conditions, is presented. This provides the base data for the identification of the SFD via Chebyshev interpolation. The identified 'FD-Chebyshev' model is initially validated against the base (FD) model by application to a simple rotor-bearing system. The superiority of vibration prediction using the FD-Chebyshev model over simplified analytical SFD models is demonstrated by comparison with published experimental results. An enhanced FD-Chebyshev scheme is then implemented within the whole-engine analysis of a realistically sized representative twin-spool aeroengine model provided by a leading manufacturer. Use of the novel Chebyshev polynomial technique is repeatedly demonstrated to reduce computation times by a factor of 10 or more when compared to the basis (FD) model, with virtually no effect on the accuracy. Focus is then shifted to an empirical identification technique. Details of the commissioning of an identification test rig and its associated data acquisition system are presented. Finally, the empirical neural networks identification process for the force function of an SFD is presented and thoroughly validated. When used within the rotordynamic analysis of the test rig, the trained neural networks is shown to be capable of predicting complex nonlinear phenomena with remarkable accuracy. The results show that the neural networks are able to capture the effects of features that are difficult to model or peculiar to a given SFD.
5

Physics Based Hierarchical Decomposition of Processes for Design of Complex Engineered Systems

Agarwal, Kuldeep 16 December 2011 (has links)
No description available.
6

Fonctionnalisation de barrières thermiques aéronautiques YSZ issues de la voie sol-gel : mesure de température et diagnostic de l'endommagement par fluorescence / Functionalisation of thermal barrier coatings synthesized by a sol-gel route : temperature measurement and damage monitoring by fluorescence methods

Copin, Etienne 10 December 2015 (has links)
L'objectif de la thèse est de développer des systèmes de Barrières Thermiques (BT) « capteurs » base zircone yttriée (ZrO2 + 9.8mol% Y2O3, YSZ) déposés par voie sol-gel selon un procédé de trempage-retrait. Ceux-ci sont dédiés à la mesure de la température par des méthodes de thermométrie par fluorescence et au suivi de l'endommagement dans l'épaisseur des revêtements. Les méthodes proposées sont basées sur le suivi de l'évolution, notamment avec la température, des propriétés de photoluminescence de marqueurs fluorescents lanthanides Ln3+, tels que l'europium Eu3+, le dysprosium Dy3+, l'erbium Er3+, le samarium Sm3+ ou encore le thulium Tm3+. Ceux-ci sont directement incorporés dans la structure de la zircone, semi-transparente dans le domaine d'émission visible de ces marqueurs. Un banc de mesure des propriétés de fluorescence (spectres, intensités et temps de vie) a spécifiquement été développé dans ce but. La caractérisation des différents couples YSZ:Ln3+ sous forme de poudres synthétisées par voie sol-gel a permis d'optimiser les compositions de manière à maximiser l'intensité du signal de fluorescence tout en préservant les propriétés microstructurales requises pour une BT. Les dépôts sol-gel réalisés par trempage-retrait permettent la fabrication de prototypes de BT multicouches fonctionnalisées intégrant jusqu'à trois couches fluorescentes de longueurs d'onde d'émission distinctes. De tels systèmes architecturés permettent de sonder optiquement la totalité de l'épaisseur de zircone déposée pour de futures applications visant à évaluer les gradients thermiques siégeant dans le volume des revêtements. Des BT fonctionnalisées contenant des défauts de délamination pré-calibrés à l'interface métal/céramique ont été également utilisées pour comparer l'intérêt d'une méthode de fluorescence accrue par réflectance et d'une méthode de thermographie infrarouge pour le suivi et l'évaluation des processus d'endommagement précurseurs de l'écaillage. Enfin, le potentiel qu'offrent les poudres de zircone YSZ:Ln3+ dopées en tant que marqueurs fluorescents de l'histoire thermique, alternatifs aux peintures thermiques utilisées industriellement, a aussi été analysé. / The aim of this work is to develop and study yttria stabilised zirconia (ZrO2 + 9.8at% Y2O3, YSZ) based thermal barrier coating (TBC) « sensor » systems deposited by a dip coating sol-gel process, and dedicated to temperature measurement and to the monitoring of damaging occuring within the thickness of the coatings, using fluorescence thermometry methods. These methods are based on the monitoring of the fluorescence properties of photoluminescent activators from the trivalent lanthanide ions group (Ln3+), such as samarium Sm3+, europium Eu3+, dysprosium Dy3+, erbium Er3+ and thulium Tm3+. These activators are directly incorporated into the zirconia YSZ host matrix lattice, which is semi-transparent at their emission wavelengths mainly falling in the visible range. An experimental set up was especially developped for the application of these methods. The characterisation of the different YSZ:Ln3+ powders synthesized by a sol-gel process allowed to optimise the compositions, and thus maximize the fluorescence signal intensity while avoidind any alteration of the zirconia crystal structure required from for a TBC material. The sol-gel dip coating process allowed to deposit functionalised multilayer TBC prototypes integrating up to three fluorescent layers with distinct emission wavelengths distributed throughout the thickness. Such coating architectures allow, with the fluorescence thermometry methods identified, to optically probe the coating across the whole thickness for future applications aiming to determine the thermal gradient in TBCs. Functionalised TBCs containing pre-calibrated delamination defects at the metal/ceramic interface were also used to compare the interest of the reflectance enhanced fluorescence method and an IR thermography method for early monitoring of TBC spallation. At last, the potential offered by YSZ:Ln3+ powders as thermal history sensors alternative to temperature sensitive paints was also investigated.
7

Development of phosphor thermometry systems for use in development gas turbine engines

Khalid, Ashiq Hussain January 2011 (has links)
The pursuit for improved engine efficiency is driving the demand for accurate temperature measurement inside turbine engines. Accurate measurement can allow engines to be operated closer to their design limits to improve thermal efficiency. It can enable engineers to verify mechanical integrity, provide better prediction of component life, validate CFD and other design tools and aid the development for leaner more efficient engines. Unfortunately, experimentally measuring surface temperatures under harsh rotating conditions is challenging. This EngD study conducted by Ashiq Hussain Khalid at the University of Manchester and Rolls-Royce plc, reviews the rationale of using phosphor thermometry over existing methods, including thermocouples, pyrometry and thermal paints/melts, which lack detail, accuracy, or are too expensive for continuous testing. Although phosphor thermometry exhibits desirable characteristics, the high temperature and fast rotating engine environment presents some challenges that would need to be addressed before a successful measurement system can be implemented. Examples of such issues include: rising blackbody radiation, restricted optical access, fibre optic constraints and limited time period to collect data. These factors will impose measurement limits and greatly influence the design philosophy of the system, including phosphor choice, phosphor lifetime characteristics, bonding technique, excitation/detection methodologies and probe design. Taking these into consideration, the research focuses on the development of phosphor thermometry systems for use in development gas turbine engines, with measurement solutions for specific engine components. The high pressure turbine blade was given research priority. A number of phosphors including YAG:Tb, YAG:Tm. Y2O3:Eu and Mg3F2GeO4:Mn were investigated and characterised in terms of intensity and lifetime decay, with increasing temperature up to 1500oC. Spectral analysis and absolute intensity measurements established emission peaks and permitted comparative quantitative analysis to optimise system setup. The intensity of phosphor emission relative to Planck's blackbody radiation was also performed. YAG:Tm under 355nm illumination was found to exhibit the highest emission intensity at high temperatures, and because its spectral emission peak at 458nm was the lowest, its advantage in terms of blackbody radiation was further amplified. For rotating components, an upper temperature limit is reached based on the emission intensity at rising blackbody radiation levels and the system's ability to detect fast decays. A lower limit is reached based on the quenching temperature, probe design and rotational velocity. There are different methods to correct the distorted decay waveform as it traverses through the acceptance cone of the fibre. A phosphor selection criterion, taking into consideration these limitations, was successfully applied for various rotating engine components. The optical layout was setup and tested on stationary and rotating cases under laboratory conditions using similar design constraints, including fibre choice, maximum permissible lens size and target distances. A series of tests validated design methodologies and assumptions to enable testing on full scale rotating engine components. Mg3F2GeO4:Mn, using 355nm illumination, was found to be the most suitable phosphor for the HP drive cone. The estimated performance under the expected rotational speeds was found to be 624-812°C with a standard uncertainty of ±0.99%. YAG:Tm, illuminated with 355nm, was found to be the most promising phosphor for high pressure turbine blade measurements. The performance under the expected rotational speeds was found to be 1117-1375°C with a standard uncertainty of ±0.97%. This is better than other competing technologies that are currently available for temperature measurement of rotating turbine blades.
8

Modeling And Evaluation Of Operational Performance Of An Aeroengine

Samuel, Mathews P 04 1900 (has links)
This thesis explores methodologies of modeling and evaluating the operational performance of a typical aeroengine having field experience over two decades. Upon failure, the engine is repaired and restored to flight worthy condition and hence comes under the purview of repairable systems. Operational performance of the engine is being measured in terms of five functions of time, namely, M(t), which is the expected number of system failures in the time interval [0,t]; system failure rate m(t), which is an unconditional quantity and is simply the derivative of M(t); ρ(t), the conditional failure intensity given the history of a system Ht, which is nothing but limdt→1 Prob(System fails in [t,t + dt] |Ht); and M′(t) and m′(t), which are 0 dt conditional entities analogous to M(t) and m(t) defined in the same spirit as that of ρ(t), the details of which are given in the third chapter of the thesis. These functions are being estimated using field failure-repair data of 418 aeroengines, where the observations on time between failures are being measured in number of flying hours logged in between failures, and the corresponding repair duration is being measured in number of calendar days. To start with, using the superimposed renewal process model the above quantities M(t), m(t), m′(t), M′(t) and ρ(t) are estimated both in the frequentist as well as the Bayesian framework. Subsequently repair times have been incorporated into the model and analysed using both frequentist and Bayesian approaches. Next, the model of Lawless and Thiagarajah (1996) which incorporates both renewal and time trend, has been generalized to include repair time as well, and a comprehensive methodology of Bayesian model selection under this model has been developed. After introducing the research problem in the first chapter, the engineering system description leading to the identification of the failure modes, repair practice and the variables of interest is taken up in the following chapter at the outset, as a pre-requisite to the stochastic modeling and the statistical analysis that to follow in the remainder of the thesis. As the first stochastic model, the number of system failures in a given time interval is modeled as a superimposed renewal process with the constituent independent renewal processes running in different component sockets having Weibull inter failure times. This model is first empirically validated using the field failure data and then using this model, the five quantities of interest as mentioned above viz. M(t), m(t), ρ(t), M′(t) and m′(t) are analysed from a frequentist maximum likelihood perspective. A Bayesian analysis of the same follows in the subsequent chapter. Next, the repair effect is incorporated into the superimposed renewal process model by considering the Weibull parameters of inter failure times of the constituent renewal processes running in independent component sockets as a polynomial in the last repair time. The nature of this polynomial relationships are empirically deter-mined and the Weibull assumption is validated through a test of hypothesis. Different polynomial relationships lead to consideration of several models, with the correct ones chosen through a series of likelihood ratio tests. Next based on the appropriate models a maximum likelihood analysis of M(t), ρ(t) and M′(t) has been carried out. Like the simple superimposed renewal process model, Bayesian analysis of this model incorporating repair times is carried out in the following chapter. In the Bayesian setup however, the problem of model selection could be kept unrestricted to non-nested models as well (unlike the previous chapter, where only nested models could be considered), and a comprehensive model selection exercise has been carried out with the aid of intrinsic Bayes factors and training data sets. The last but one chapter presents a generalised model of Lawless and Thiagarajah (1996) for performance evaluation of aeroengines that incorporate renewals, time trends and the repair characteristics. Here also since the primary problem is one of model selection, the entire analysis like in the preceding chapter has been carried out under the Bayesian frame-work. The final chapter concludes the thesis by comparing the empirical results obtained in the previous five chapters, summarising the main contributions of the thesis and providing directions for future research.
9

COMPUTATIONAL FRAMEWORK TO ASSESS ROLE OF MANUFACTURING IN MATERIAL-DEFECT RELATED FAILURE RISK

Subramanian, Rohit 02 October 2014 (has links)
No description available.

Page generated in 0.0569 seconds