• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Representing droplet size distribution and cloud processes in aerosol-cloud-climate interaction studies

Hsieh, Wei-Chun 04 May 2009 (has links)
The indirect effect of aerosols expresses how changes in aerosols would influence clouds and cause impacts on Earth's climate and hydrological cycle. The current assessment of the interactions between aerosols and clouds is uncertain and parameterizations used to represent cloud processes are not well constrained. This thesis first evaluates a cloud activation parameterization by investigating cloud droplet number concentration closure for stratocumulus clouds sampled during the 2005 MArine Stratus Experiment (MASE). Further analysis of the droplet size distribution characteristics using the extended parameterization is performed by comparing the predicted droplet spectra with the observed ones. The effect of dynamical variability on the droplet size distribution evolution is also investigated by considering a probability density function for updraft velocity. The cumulus and stratocumulus cloud datasets from in-situ field measurements of NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) and Coastal STRatocumulus Imposed Perturbation Experiment (CSTRIPE) campaigns are used for this task. Using the same datasets, the autoconversion rate is calculated based on direct integration of kinematic collection equation (KCE). Six autoconversion parameterizations are evaluated and the effect of turbulence on magnifying collection process is also considered. Finally, a general circulation model (GCM) is used for studying the effect of different autoconversion parameterizations on indirect forcing estimates. The autoconversion rate given by direct KCE integration is also included by implementing a look-up table for collection kernels. Although these studies add more variability to the current estimate of aerosol indirect forcing, they also provide direction towards a more accurate assessment for climate prediction.
2

Simulation of Aerosol-Cloud Interactions in the WRF Model at the Southern Great Plains Site

Vogel, Jonathan 1988- 14 March 2013 (has links)
The aerosol direct and indirect effects were investigated for three specific cases during the March 2000 Cloud IOP at the SGP site by using a modified WRF model. The WRF model was previously altered to include a two-moment bulk microphysical scheme for the aerosol indirect effect and a modified Goddard shortwave radiation scheme for the aerosol direct effect. The three cases studied include a developing low pressure system, a low precipitation event of mainly cirrus clouds, and a cold frontal passage. Three different aerosol profiles were used with surface concentrations ranging from 210 cm-3 to 12,000 cm-3. In addition, each case and each aerosol profile was run both with and without the aerosol direct effect. Regardless of the case, increasing the aerosol concentration generally increased cloud water and droplet values while decreasing rain water and droplet values. Increased aerosols also decreased the surface shortwave radiative flux for every case; which was greatest when the aerosol direct effect was included. For convective periods during polluted model runs, the aerosol direct effect lowered the surface temperature and reduced convection leading to a lower cloud fraction. During most convective periods, the changes to cloud, rain, and ice water mixing ratios and number concentrations produced a nonlinear precipitation trend. A balance between these values was achieved for moderate aerosol profiles, which produced the highest convective precipitation rates. In non-convective cases, due to the presence of ice particles, aerosol concentration and precipitation amounts were positively correlated. The aerosol threshold between precipitation enhancement and suppression should be further studied for specific cloud types as well as for specific synoptic weather patterns to determine its precise values.
3

Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations

Menon, Surabo, Brenguier, Jean-Louis, Boucher, Olivier, Davison, Paul, Del Genio, Anthony D., Feichter, Johann, Ghan, Steven, Guibert, Sarah, Xiaohong, Liu, Lohmann, Ulrike, Pawlowska, Hanna, Penner, Joyce E., Quaas, Johannes, Roberts, David L., Schüller, Lothar, Snider, Jefferson 21 August 2015 (has links) (PDF)
The Second Aerosol Characterization Experiment (ACE-2) data set along with ECMWF reanalysis meteorological fields provided the basis for the single column model (SCM) simulations, performed as part of the PACE (Parameterization of the Aerosol Indirect Climatic Effect) project. Six different SCMs were used to simulate ACE-2 case studies of clean and polluted cloudy boundary layers, with the objective being to identify limitations of the aerosol/cloud/radiation interaction schemes within the range of uncertainty in in situ, reanalysis and satellite retrieved data. The exercise proceeds in three steps. First, SCMs are configured with the same fine vertical resolution as the ACE-2 in situ data base to evaluate the numerical schemes for prediction of aerosol activation, radiative transfer and precipitation formation. Second, the same test is performed at the coarser vertical resolution of GCMs to evaluate its impact on the performance of the parameterizations. Finally, SCMs are run for a 24–48 hr period to examine predictions of boundary layer clouds when initialized with large-scale meteorological fields. Several schemes were tested for the prediction of cloud droplet number concentration (N). Physically based activation schemes using vertical velocity show noticeable discrepancies compared to empirical schemes due to biases in the diagnosed cloud base vertical velocity. Prognostic schemes exhibit a larger variability than the diagnostic ones, due to a coupling between aerosol activation and drizzle scavenging in the calculation of N. When SCMs are initialized at a fine vertical resolution with locally observed vertical profiles of liquid water, predicted optical properties are comparable to observations. Predictions however degrade at coarser vertical resolution and are more sensitive to the mean liquid water path than to its spatial heterogeneity. Predicted precipitation fluxes are severely underestimated and improve when accounting for sub-grid liquid water variability. Results from the 24–48 hr runs suggest that most models have problems in simulating boundary layer cloud morphology, since the large-scale initialization fields do not accurately reproduce observed meteorological conditions. As a result, models significantly overestimate optical properties. Improved cloud morphologies were obtained for models with subgrid inversions and subgrid cloud thickness schemes. This may be a result of representing subgrid scale effects though we do not rule out the possibility that better large-forcing data may also improve cloud morphology predictions.
4

On the representation of aerosol-cloud interactions in atmospheric models

Barahona, Donifan 01 July 2010 (has links)
Anthropogenic atmospheric aerosols (suspended particulate matter) can modify the radiative balance (and climate) of the Earth by altering the properties and global distribution of clouds. Current climate models however cannot adequately account for many important aspects of these aerosol-cloud interactions, ultimately leading to a large uncertainty in the estimation of the magnitude of the effect of aerosols on climate. This thesis focuses on the development of physically-based descriptions of aerosol-cloud processes in climate models that help to address some of such predictive uncertainty. It includes the formulation of a new analytical parameterization for the formation of ice clouds, and the inclusion of the effects of mixing and kinetic limitations in existing liquid cloud parameterizations. The parameterizations are analytical solutions to the cloud ice and water particle nucleation problem, developed within a framework that considers the mass and energy balances associated with the freezing and droplet activation of aerosol particles. The new frameworks explicitly account for the impact of cloud formation dynamics, the aerosol size and composition, and the dominant freezing mechanism (homogeneous vs. heterogeneous) on the ice crystal and droplet concentration and size distribution. Application of the new parameterizations is demonstrated in the NASA Global Modeling Initiative atmospheric and chemical and transport model to study the effect of aerosol emissions on the global distribution of ice crystal concentration, and, the effect of entrainment during cloud droplet activation on the global cloud radiative properties. The ice cloud formation framework is also used within a parcel ensemble model to understand the microphysical structure of cirrus clouds at very low temperature. The frameworks developed in this work provide an efficient, yet rigorous, representation of cloud formation processes from precursor aerosol. They are suitable for the study of the effect of anthropogenic aerosol emissions on cloud formation, and can contribute to the improvement of the predictive ability of atmospheric models and to the understanding of the impact of human activities on climate.
5

Modeling the Direct and Indirect Effects of Atmospheric Aerosols on Tropical Cyclones

Lee, Keun-Hee 2011 December 1900 (has links)
The direct and indirect effects of aerosols on the hurricane ‘Katrina’ have been investigated using the WRF model with a two-moment bulk microphysical scheme and modified Goddard shortwave radiation scheme. Simulations of the hurricane ‘Katrina’ are conducted under the three aerosol scenarios: 1) the clean case with an aerosol number concentration of 200 cm-1, 2) the polluted case with a number concentration of 1000 cm-1, and 3) the aerosol radiative effects (AR) case with same aerosol concentration as polluted case but with a modified shortwave radiation scheme. The polluted and AR cases have much larger amounts of cloud water and water vapor in troposphere, and the increased cloud water can freeze to produce ice water paths. A tropical cyclone in dirty and dusty air has active rainbands outside the eyewall due to aerosol indirect effects. The aerosol direct effect can lead to the suppressing of convection and weakening of updraft intensity by warming the troposphere and cooling the surface temperature. However, these thermal changes in atmosphere are concerned with the enhanced amounts of cloud hydrometeors and modification of downdraft and corresponding the low level winds in rainband regions. Thus, the AR case can produce the enhanced precipitation even in the weakest hurricane. When comparing the model performance between aerosol indirect and direct effect by ensemble experiments, the adjustment time of the circulation due to modification of the aerosol radiative forcing by aerosol layers may take a longer time than the hurricane lifetime, and the results from the simulated hurricane show that it is more sensitive to aerosol indirect effects which are related to the cloud microphysics process changes. From this aerosol study, we can suggest that aerosols can influence the cloudiness, precipitation, and intensity of hurricanes significantly, and there may be different results in the meso-scale convective clouds cases. The hurricane system is a large and complex convective system with enormous heating energy and moistures. Moreover, relationships between various hydrometeors in hurricane systems are difficult to isolate and thus, it needs further study with more realistic cloud microphysical processes, aerosol distributions, and parameterizations.
6

Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations: Evaluating aerosol/cloud/radiation process parameterizations withsingle-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations

Menon, Surabo, Brenguier, Jean-Louis, Boucher, Olivier, Davison, Paul, Del Genio, Anthony D., Feichter, Johann, Ghan, Steven, Guibert, Sarah, Xiaohong, Liu, Lohmann, Ulrike, Pawlowska, Hanna, Penner, Joyce E., Quaas, Johannes, Roberts, David L., Schüller, Lothar, Snider, Jefferson January 2003 (has links)
The Second Aerosol Characterization Experiment (ACE-2) data set along with ECMWF reanalysis meteorological fields provided the basis for the single column model (SCM) simulations, performed as part of the PACE (Parameterization of the Aerosol Indirect Climatic Effect) project. Six different SCMs were used to simulate ACE-2 case studies of clean and polluted cloudy boundary layers, with the objective being to identify limitations of the aerosol/cloud/radiation interaction schemes within the range of uncertainty in in situ, reanalysis and satellite retrieved data. The exercise proceeds in three steps. First, SCMs are configured with the same fine vertical resolution as the ACE-2 in situ data base to evaluate the numerical schemes for prediction of aerosol activation, radiative transfer and precipitation formation. Second, the same test is performed at the coarser vertical resolution of GCMs to evaluate its impact on the performance of the parameterizations. Finally, SCMs are run for a 24–48 hr period to examine predictions of boundary layer clouds when initialized with large-scale meteorological fields. Several schemes were tested for the prediction of cloud droplet number concentration (N). Physically based activation schemes using vertical velocity show noticeable discrepancies compared to empirical schemes due to biases in the diagnosed cloud base vertical velocity. Prognostic schemes exhibit a larger variability than the diagnostic ones, due to a coupling between aerosol activation and drizzle scavenging in the calculation of N. When SCMs are initialized at a fine vertical resolution with locally observed vertical profiles of liquid water, predicted optical properties are comparable to observations. Predictions however degrade at coarser vertical resolution and are more sensitive to the mean liquid water path than to its spatial heterogeneity. Predicted precipitation fluxes are severely underestimated and improve when accounting for sub-grid liquid water variability. Results from the 24–48 hr runs suggest that most models have problems in simulating boundary layer cloud morphology, since the large-scale initialization fields do not accurately reproduce observed meteorological conditions. As a result, models significantly overestimate optical properties. Improved cloud morphologies were obtained for models with subgrid inversions and subgrid cloud thickness schemes. This may be a result of representing subgrid scale effects though we do not rule out the possibility that better large-forcing data may also improve cloud morphology predictions.
7

Using ship tracks to characterize the effects of haze on cloud properties

Segrin, Matthew S. 14 June 2006 (has links)
1-km MODIS observations of ship tracks off the west coast of the U.S. are used to characterize changes in cloud visible optical depths, cloud droplet radii, cloud cover fraction, and column cloud liquid water amount as low-level marine clouds respond to particle pollution from underlying ships. This study re-examines the finding of earlier studies based on Advanced Very High Resolution Radiometer (AVHRR) observations showing that when restricted to pixels overcast by low-level, single-layered cloud systems, the polluted clouds in the ship tracks had on average ~20% less liquid water than the nearby uncontaminated clouds. This study uses Moderate Imaging Spectroradiometer (MODIS) observations from the Terra and Aqua satellites and takes advantage of the 1.6 and 2.1-µm channels in addition to the 3.7-µm channel available on AVHRR to derive droplet effective radii. The additional channels allow for different and presumably more comprehensive analyses of the cloud properties. In addition, this study uses a retrieval scheme that accounts for the effects of partial cloudiness within the 1-km pixels on the retrieved cloud properties. An improved automated track finding scheme that allows for the selection of unpolluted clouds to be closer to the clouds identified as being polluted is also employed in this study. When restricted to overcast pixels, as was done in earlier studies, results from the Terra and Aqua MODIS observations indicate that cloud droplet effective radii are significantly smaller and cloud optical depths significantly larger for polluted pixels than for unpolluted pixels. Cloud top height does not change when clouds become polluted but cloud liquid water path decreases slightly but significantly. The decrease in cloud liquid water obtained with the MODIS observations was at most ~10%, much less than the 20% obtained with the AVHRR observations. This decrease, however, depended on the wavelength used to derive the droplet effective radii. Also, the clouds that were most sensitive to pollution were those with small optical depths and large droplet effective radii. / Graduation date: 2007

Page generated in 0.0873 seconds