• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 400
  • 98
  • 68
  • 47
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 2
  • Tagged with
  • 817
  • 204
  • 156
  • 91
  • 90
  • 76
  • 75
  • 67
  • 59
  • 59
  • 56
  • 52
  • 51
  • 48
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Size distributions of elemental carbon, organic carbon, and polycyclic aromatic hydrocarbons in ambient aerosols of the Pearl River Delta region /

Yu, Huan. January 2009 (has links)
Ph.D. in Atmospheric Environmental Science. Includes bibliographical references (p. 152-168).
82

Modeling of the aerosol-cloud interactions in marine stratocumulus /

Liu, Qingfu, January 1997 (has links)
Thesis (Ph. D.)--University of Oklahoma, 1997. / Includes bibliographical references (leaves 125-131).
83

A STUDY OF PHOTOCHEMICAL AEROSOL FORMATION AND THE COAGULATIVE MASS TRANSPORT IN NATURAL AND LABORATORY AEROSOL - GAS MIXTURES

Zalabsky, Richard Adolph, 1948- January 1978 (has links)
No description available.
84

Spectroscopic investigations of aerosol graphitic carbon

McLaine, Charles Raymond January 1980 (has links)
No description available.
85

A RANDOM SEARCH TECHNIQUE USING LASER LIGHT SCATTERING MEASUREMENTS TO ESTIMATE PARAMETERS ASSOCIATED WITH THE SIZE DISTRIBUTION OF ATMOSPHERIC AEROSOLS

Spiegel, Ronald John, 1942- January 1970 (has links)
No description available.
86

Formation and evolution of volcanic aerosol

Ilyinskaya, Evgenia January 2011 (has links)
No description available.
87

Aerosol stability studies with the Japan 305/57 strain of influenza virus

Malone, K. Harold, 1935- January 1968 (has links)
No description available.
88

An acoustic technique for the measurment of absorption coefficients of aerosol particles

Swinford, Robert Lee, 1949- January 1975 (has links)
No description available.
89

Scavenging of aerosol particles by precipitation

Leduc, Anne-Marie. January 1982 (has links)
No description available.
90

Aerosol Wet Scavenging and Cloud Processing of Aerosols in a Global Climate Model

Croft, Betty 28 January 2011 (has links)
Clouds strongly influence three-dimensional aerosol distributions by 1) wet scavenging and subsequent deposition to the earth's surface, and 2) processing and subsequent release to the atmosphere by evaporation processes. In this study, physically detailed size-dependent representations of below-cloud and in-cloud scavenging for mixed phase clouds are introduced into the ECHAM5-HAM global climate model. As well, a stratiform cloud aerosol processing scheme is extended to convective clouds. Below-cloud impaction scavenging is found to contribute strongly to the global and annual mean mass deposition for sulfate (14%), black carbon (13%), particulate organic matter (10%), sea salt (23%), and dust (24%). The modeled global mean aerosol optical depth, and sea salt burden are reduced by about 15% for the more vigorous size-dependent parameterization of below-cloud scavenging by rain and snow. In stratiform clouds, aerosol mass is found to be primarily (>90%) scavenged by cloud nucleation processes for all aerosol species, except for dust (50%). Uncertainties in the representation of in-cloud scavenging processes change the predicted annual, global mean aerosol mass burdens by 20 to 30%, and change the predicted aerosol mass concentrations by up to one order of magnitude in the middle troposphere where mixed phase clouds exist. Closer agreement with observations of black carbon profiles from aircraft is found for the new in-cloud scavenging scheme. Convective and stratiform clouds contribute about equally to the global, annual mean aerosol processing, but wet deposition is primarily attributed to stratiform clouds (75%). Sulfate and carbonaceous aerosols undergo 1-3 cloud cycles before deposition. Aerosol burdens and optical depth (AOD) increase by a factor of 3-5 with the explicit representation of cloud/precipitation evaporation. Revised sea salt emissions and more vigorous in-cloud impaction scavenging reduce the AOD by a factor of three to give closer agreement with satellite retrievals. Observed marine boundary layer accumulation mode size distributions, and vertically integrated aerosol size distributions from AERONET observations are more closely approximated with the aerosol processing scheme than for the standard ECHAM5-HAM.

Page generated in 0.0307 seconds