• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction between Adenosine and Angiotensin II in Renal Afferent Arterioles of Mice

Lai, Enyin January 2007 (has links)
<p>Renal arterioles represent the most important effecter site in the control of renal perfusion and filtration. Adenosine (Ado), angiotensin II (Ang II) and nitric oxide (NO) interact in modulating arteriolar tone. The present work investigates the mechanism of this interaction. We tested the hypothesis that AT<sub>1</sub> receptor (AT<sub>1</sub>AR) mediated NO release in isolated perfused afferent arterioles. Further, special attention was given to mechanisms of Ado-Ang II -interactions.</p><p>We found (I) that Ang II specifically induces NO release via AT<sub>1</sub>AR in arterioles. The effect is important in view of high renin and Ang II concentrations in these vessels. (II) Ado modulates the Ang II response by acting on vasoconstrictor A<sub>1</sub>AR and vasodilator A<sub>2</sub>AR. Vice versa, Ang II critically enhances the constriction to Ado, which supports the assumption of its modulating action in the tubuloglomerular feedback (TGF). (III) The synergistic effect of Ang II and Ado on arteriolar contraction is concurrent with an increase in the cytosolic calcium. Further, (IV) Ado increases the calcium sensitivity of the contractile machinery in arteriolar smooth muscle cells most probably by enhancement of the phosphorylation of the myosin light chain regulatory unit. RhoA kinase, protein kinase C and p38 MAP are involved in the Ado effect, which is not receptor mediated and depends on the Ado uptake into vascular cells. Remarkably, the enhancing action of Ado is most likely limited to Ang II; since Ado does not influence endothelin-1 and norepinephrine induced contractions.</p><p>These novel results extend our knowledge about the synergistic action of Ang II and Ado in the control of renal filtration. Ado, the key factor in mediation of the TGF, develops a significant vasoconstrictor action only in the presence of Ang II. On the other hand, the Ang II induced vasoconstriction is modulated by Ado via receptor and non-receptor mediated intracellular signaling pathways.</p>
2

Interaction between Adenosine and Angiotensin II in Renal Afferent Arterioles of Mice

Lai, Enyin January 2007 (has links)
Renal arterioles represent the most important effecter site in the control of renal perfusion and filtration. Adenosine (Ado), angiotensin II (Ang II) and nitric oxide (NO) interact in modulating arteriolar tone. The present work investigates the mechanism of this interaction. We tested the hypothesis that AT1 receptor (AT1AR) mediated NO release in isolated perfused afferent arterioles. Further, special attention was given to mechanisms of Ado-Ang II -interactions. We found (I) that Ang II specifically induces NO release via AT1AR in arterioles. The effect is important in view of high renin and Ang II concentrations in these vessels. (II) Ado modulates the Ang II response by acting on vasoconstrictor A1AR and vasodilator A2AR. Vice versa, Ang II critically enhances the constriction to Ado, which supports the assumption of its modulating action in the tubuloglomerular feedback (TGF). (III) The synergistic effect of Ang II and Ado on arteriolar contraction is concurrent with an increase in the cytosolic calcium. Further, (IV) Ado increases the calcium sensitivity of the contractile machinery in arteriolar smooth muscle cells most probably by enhancement of the phosphorylation of the myosin light chain regulatory unit. RhoA kinase, protein kinase C and p38 MAP are involved in the Ado effect, which is not receptor mediated and depends on the Ado uptake into vascular cells. Remarkably, the enhancing action of Ado is most likely limited to Ang II; since Ado does not influence endothelin-1 and norepinephrine induced contractions. These novel results extend our knowledge about the synergistic action of Ang II and Ado in the control of renal filtration. Ado, the key factor in mediation of the TGF, develops a significant vasoconstrictor action only in the presence of Ang II. On the other hand, the Ang II induced vasoconstriction is modulated by Ado via receptor and non-receptor mediated intracellular signaling pathways.
3

Local Purinergic Control of Arteriolar Reactivity in Pancreatic Islets and Renal Glomeruli

Gao, Xiang January 2014 (has links)
Local control of regional blood flow is exerted mainly through the arterioles. An adequate minute-to-minute regulation of blood perfusion of the kidney and the pancreas is obtained by the modulation of arteriolar reactivity, which will influence the organ function. The importance of purinergic signaling in this concept has been addressed, with special emphasis on the role of the adenosine A1 receptor. The effects of adenosine on two specialized vascular beds, namely the renal glomerulus and the pancreatic islets, have been examined. Characteristic for these regional circulations is their very high basal blood flow, but with somewhat different responses to vasoconstrictor and vasodilator stimuli. By adapting a unique microperfusion technique it was possible to separately perfuse isolated single mouse arterioles with attached glomeruli or pancreatic islets ex vivo. Microvascular responses were investigated following different additions to the perfusion fluid to directly examine the degree of dilation or constriction of the arterioles. This has been performed on transgenic animals in this thesis, e.g. A1 receptor knockout mice. Also effects of P2Y receptors on islet arterioles were examined in both normoglycemic and type 2 diabetic rats. Furthermore, interference with adenosine transport in glomerular arterioles were examined.. Our studies demonstrate important, yet complex, effects of adenosine and nucleotide signaling on renal and islet microvascular function, which in turn may influence both cardiovascular and metabolic regulations. They highlight the need for further studies of other purinergic receptors in this context, studies that are at currently being investigated.
4

THE ROLE OF MYOGENIC CONSTRICTION IN HYPERTENSION AND CHRONIC KIDNEY DISEASE / MYOGENIC CONSTRICTION: ITS REGULATION, ROLE IN HYPERTENSIVE KIDNEY DISEASE, AND ASSOCIATION WITH URINARY UROMODULIN

Nademi, Samera January 2022 (has links)
Chronic kidney disease (CKD) is defined as glomerular filtration rate (GFR) less than 60 mL/min/1.73 m2 for 3 months and is characterized by progressive loss of renal function. The second leading cause of CKD is hypertension. More than half of CKD patients also suffer from hypertension. Arteries and arterioles adjust to the fluctuations in the systematic blood pressure through a mechanism called autoregulation. In the kidneys, autoregulation protects the delicate glomeruli capillaries from high blood pressure and occurs through myogenic constriction (MC). MC refers to contraction of arterioles in response to an increase in the blood pressure. Chronically hypertensive individuals and animal models have an enhanced MC, leading to minimal renal injury despite their elevated blood pressure. Experimental and clinical evidence point to a role for the MC in the pathogenesis of the CKD, however, the mechanism through which preglomerular arterial MC contributes to CKD has not been fully elucidated. This thesis showed that augmented MC in chronically hypertensive animal models was due to increased thromboxane A2 prostaglandin that was not released from the endothelium (Chapter 2). Nevertheless, inhibiting MC while also reducing the blood pressure prevented salt-induced renal injury even though the blood pressure was still not normalized compared to the normotensive controls (Chapter 3). The resulting improvement in renal structure and function could be attributed to the reduction in the blood pressure, albumin, and uromodulin (UMOD) excretion (Chapter 3). UMOD is a kidney-specific glycoprotein that, based on a genome-wide association study have the strongest association to CKD (Chapter 3). Comparing two CKD hypertensive animal models further revealed that CKD progression was independent of the blood pressure and strongly associated with UMOD excretion levels (Chapter 4). Collectively, the data discussed in this thesis demonstrates potential therapeutic targets in CKD hypertensive animal models. / Dissertation / Doctor of Philosophy (PhD)

Page generated in 0.0797 seconds