1 |
Affine Processes and Pseudo-Differential Operators with Unbounded CoefficientsSchwarzenberger, Michael 04 October 2016 (has links) (PDF)
The concept of pseudo-differential operators allows one to study stochastic processes through their symbol. This approach has generated many new insights in recent years. However, most results are based on the assumption of bounded coefficients. In this thesis, we study Levy-type processes with unbounded coefficients and, especially, affine processes. In particular, we establish a connection between pseudo-differential operators and affine processes which are well-known from mathematical finance. Affine processes are an interesting example in this field since they have linearly growing and hence unbounded coefficients. New techniques and tools are developed to handle the affine case and then expanded to general Levy-type processes. In this way, the convergence of a simulation scheme based on a Markov chain approximation, results on path properties, and necessary conditions for the symmetry of operators were proven.
|
2 |
Affine Processes and Pseudo-Differential Operators with Unbounded CoefficientsSchwarzenberger, Michael 12 May 2016 (has links)
The concept of pseudo-differential operators allows one to study stochastic processes through their symbol. This approach has generated many new insights in recent years. However, most results are based on the assumption of bounded coefficients. In this thesis, we study Levy-type processes with unbounded coefficients and, especially, affine processes. In particular, we establish a connection between pseudo-differential operators and affine processes which are well-known from mathematical finance. Affine processes are an interesting example in this field since they have linearly growing and hence unbounded coefficients. New techniques and tools are developed to handle the affine case and then expanded to general Levy-type processes. In this way, the convergence of a simulation scheme based on a Markov chain approximation, results on path properties, and necessary conditions for the symmetry of operators were proven.
|
3 |
Non-Negativity, Zero Lower Bound and Affine Interest Rate Models / Positivité, séjours en zéro et modèles affines de taux d'intérêtRoussellet, Guillaume 15 June 2015 (has links)
Cette thèse présente plusieurs extensions relatives aux modèles affines positifs de taux d'intérêt. Un premier chapitre introduit les concepts reliés aux modélisations employées dans les chapitres suivants. Il détaille la définition de processus dits affines, et la construction de modèles de prix d'actifs obtenus par non-arbitrage. Le chapitre 2 propose une nouvelle méthode d’estimation et de filtrage pour les modèles espace-état linéaire-quadratiques. Le chapitre suivant applique cette méthode d’estimation à la modélisation d’écarts de taux interbancaires de la zone Euro, afin d’en décomposer les fluctuations liées au risque de défaut et de liquidité. Le chapitre 4 développe une nouvelle technique de création de processus affines multivariés à partir leurs contreparties univariées, sans imposer l’indépendance conditionnelle entre leurs composantes. Le dernier chapitre applique cette méthode et dérive un processus affine multivarié dont certaines composantes peuvent rester à zéro pendant des périodes prolongées. Incorporé dans un modèle de taux d’intérêt, ce processus permet de rendre compte efficacement des taux plancher à zéro. / This thesis presents new developments in the literature of non-negative affine interest rate models. The first chapter is devoted to the introduction of the main mathematical tools used in the following chapters. In particular, it presents the so-called affine processes which are extensively employed in no-arbitrage interest rate models. Chapter 2 provides a new filtering and estimation method for linear-quadratic state-space models. This technique is exploited in the 3rd chapter to estimate a positive asset pricing model on the term structure of Euro area interbank spreads. This allows us to decompose the interbank risk into a default risk and a liquidity risk components. Chapter 4 proposes a new recursive method for building general multivariate affine processes from their univariate counterparts. In particular, our method does not impose the conditional independence between the different vector elements. We apply this technique in Chapter 5 to produce multivariate non-negative affine processes where some components can stay at zero for several periods. This process is exploited to build a term structure model consistent with the zero lower bound features.
|
Page generated in 0.0547 seconds