• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 334
  • 54
  • 41
  • 22
  • 22
  • 22
  • 16
  • 13
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 677
  • 149
  • 113
  • 80
  • 77
  • 65
  • 64
  • 52
  • 51
  • 45
  • 44
  • 41
  • 40
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Engineering thermo-responsive affinity ligands for glycoprotein purification by affinity precipitation

Arnold, Lindsay G. 08 June 2015 (has links)
Effective methods for isolation and purification of glycoproteins are of increasing significance to the rapidly growing biopharmaceutical and diagnostic industry. Glycoproteins represent the majority of therapeutic proteins on the market and are effectively used to treat immune disorders, infections, cancers, and other diseases. Targeting these glycoproteins is also critical to an emerging field of glycoproteomics aimed to understand structure-function relationships of glycans. Architecturally, these glycoproteins are proteins with covalently linked oligosaccharide chains of varying monosaccharide composition. Affinity chromatography has proven to be an excellent method of glycoprotein purification at the bench scale. However, chromatography in large scale production has its drawbacks. Column fowling, flowrate limitations, and diffusional constraints collectively hinder the effectiveness of the method. An alternative proposed in this dissertation is the use of affinity precipitation as a purification technique. The three main objectives are 1) develop and produce dual-functional, thermo-responsive affinity ligands from a biological host, 2) characterize and optimize the accompanying affinity precipitation method, and 3) apply the ligand and process to relevant, unmodified glycoproteins. The design of the thermo-responsive affinity construct was comprised of two main functional domains. The binding capability was achieved by selection of small ligands with affinity to a specific monosaccharide moiety. Two different lectins, or sugar binding proteins, were used in the fusion design: a fucose binding lectin from Ralstonia solanacearum, and a sialic acid binding lectin from Vibrio cholera. The thermo-responsive functionality was obtained by use of an elastin-like peptide (ELP), which confers inverse solubility relationship properties to the fusion construct. A small library of varying ELP chain lengths were designed to find the optimal size fusion for both production and function. These dual functional ligands were cloned and expressed in the microbial host, E. coli. Furthermore, secretion of these constructs was achieved by employing the Tat secretion pathway in combination with an outer membrane lipoprotein deletion mutant with a leaky periplasm phenotype. This secretory mechanism allows for easy isolation, avoidance of inclusion bodies, and no additional protease inhibitors. After successful production, the ligands were tested to confirm that dual functionality was preserved in fusion form. Once binding conditions and precipitation properties were ascertained, the purification ability was tested on model glycoproteins. Experimentation was carried out monitoring the purification yield, purity, and retained activity of the target enzymes. High contaminant solutions, such as cell lysates, were spiked with the model glycoproteins to mimic crude protein solutions. The purification ability of the constructs in these models was observed. The method was then implemented on two relevant glycoprotein applications: 1) purification of soybean peroxidase from a crude protein extract and 2) targeting the therapeutic protein erythropoietin from albumin rich, used CHO cell media. By implementation of the fucose targeting fusion construct, the unmodified soybean peroxidase is isolated from a natural crude extract from the soybean hull, a by-product of the soybean industry. The affinity precipitation method parameters were optimized with respect to ratios, temperatures, recycle, and elution buffers to achieve successful isolation of the low abundance enzyme. Under the optimized conditions, >95% recovery yield and a purification of 22.7 fold of an active, pure product was attainable. The purification of erythropoietin led to additional experimentation with high-abundant glycoprotein solutions, as well as expansion of the affinity ligand platform. The concept of multi-lectin affinity precipitation, using the fucose and sialic acid binding lection sequentially, was introduced and tested for purification capability. An industrially relevant scheme involving isolation of the erythropoietin from used CHO cell media allowed for an achievable yield of about 60%, with a resulting albumin depletion of about 85%. In addition to development of a pair of novel thermo-responsive affinity ligands for glycoprotein purification, this dissertation provides insight on possible improvements and future directions with respect to the thermo-responsive affinity ligand platform. This unique concept employs novel lectin fusions to target valuable glycoproteins using a method avoiding the major drawbacks associated with chromatography.
112

Mass Spectrometry and Affinity Based Methods for Analysis of Proteins and Proteomes

Sundberg, Mårten January 2015 (has links)
Proteomics is a fast growing field and there has been a tremendous increase of knowledge the last two decades. Mass spectrometry is the most used method for analysis of complex protein samples. It can be used both in large scale discovery studies as well as in targeted quantitative studies. In parallel with the fast improvements of mass spectrometry-based proteomics there has been a fast growth of affinity-based methods. A common challenge is the large dynamic range of protein concentrations in biological samples. No method can today cover the whole dynamic range. If affinity and mass spectrometry-based proteomics could be used in better combination, this would be partly solved. The challenge for affinity-based proteomics is the poor specificity that has been seen for many of the commercially available antibodies. In mass spectrometry, the challenges are sensitivity and sample throughput. In this thesis, large scale approaches for validation of antibodies and other binders are presented. Protein microarrays were used in four validation studies and one was based on mass spectrometry. It is shown that protein microarrays can be valuable tools to check the specificity of antibodies produced in a large scale production. Mass spectrometry was shown to give similar results as Western blot and Immunohistochemistry regarding specificity, but did also provide useful information about which other proteins that were bound to the antibody. Mass spectrometry has many applications and in this thesis two methods contributing with new knowledge in animal proteomics are presented. A combination of high affinity depletion, SDS PAGE and mass spectrometry revealed 983 proteins in dog cerebrospinal fluid, of which 801 were marked as uncharacterized in UniProt. A targeted quantitative study of cat serum based on parallel reaction monitoring showed that mass spectrometry can be an applicable method instead of ELISA in animal proteomic studies. Mass spectrometry is a generic method and has the advantage of shorter and less expensive development costs for specific assays that are not hampered by cross-reactivity. Mass spectrometry supported by affinity based applications will be an attractive tool for further improvements in the proteomic field.
113

A survey on using side information in recommendation systems

Gunasekar, Suriya 13 August 2012 (has links)
This report presents a survey of the state-of-the-art methods for building recommendation systems. The report mainly concentrates on systems that use the available side information in addition to a fraction of known affinity values such as ratings. Such data is referred to as Dyadic Data with Covariates (DyadC). The sources of side information being considered includes user/item entity attributes, temporal information and social network attributes. Further, two new models for recommendation systems that make use of the available side information within the collaborative filtering (CF) framework, are proposed. Review Quality Aware Collaborative Filtering, uses external side information, especially review text to evaluate the quality of available ratings. These quality scores are then incorporated into probabilistic matrix factorization (PMF) to develop a weighted PMF model for recommendation. The second model, Mixed Membership Bayesian Affinity Estimation (MMBAE), is based on the paradigm of Simultaneous Decomposition and Prediction (SDaP). This model simultaneously learns mixed membership cluster assignments for users and items along with a predictive model for rating prediction within each co-cluster. Experimental evaluation on benchmark datasets are provided for these two models. / text
114

Biochemical and Structural Studies of Membrane Proteins

Wang, Ruiqi Rachel 10 August 2012 (has links)
Membrane proteins live at the interface between a cell and its environment; hence, they play a variety of important physiological roles such as transmembrane transport, signal transduction, and cell adhesion. The importance of membrane proteins in biology and medicine requires that we understand their structure and function on the atomic level. In this thesis, I studied members of two different membrane protein families, namely the neuronal and keratinocyte TRPV ion channels that sense temperature changes and MP20, a member of the PMP22/EMP/MP20/claudin superfamily. Using a variety of biochemical, X-ray crystallographic and electrophysiological techniques, I addressed mechanistic questions pertaining to the regulation of thermosensitive TRPV channels by ATP and calmodulin in neurons and keratinocytes. For MP20, a protein specific for the lens of the mammalian eye, I used a vesicle assay in combination with electron microscopy (EM) to study its function, ruling out the possibility that MP20 is involved in the formation of membrane junctions. Furthermore, I made progress in expressing and crystallizing MP20 for X-ray diffraction studies. In a separate effort, I also worked on improving and expanding the use of monolayer purification and Affinity Grids, recently introduced techniques to prepare specimens for single-particle EM based on the recruitment of His-tagged proteins to nickel lipidcontaining lipid monolayers. I extended the use of these techniques by synthesizing a glutathione lipid that can be used to recruit GST-tagged proteins. A major hurdle in the use of monolayer purification techniques, however, is the extent of non-specific protein binding to the lipid monolayer. I found that incorporating PEG lipids in the monolayer appears to reduce the problem of non-specific protein binding. While it remains to be seen whether these techniques can be developed to a point at which it will be possible to recruit exclusively tagged proteins out of cell lysates, my goal is to continue to improve and expand the use of the monolayer purification and Affinity Grid techniques in hope to make single-particle EM more easily amenable to biochemists and cell biologists.
115

Molecular investigation of polypyrrole and surface recognition by affinity peptides

Fonner, John Michael 23 January 2012 (has links)
Successful tissue engineering strategies in the nervous system must be carefully crafted to interact favorably with the complex biochemical signals of the native environment. To date, all chronic implants incorporating electrical conductivity degrade in performance over time as the foreign body reaction and subsequent fibrous encapsulation isolate them from the host tissue. Our goal is to develop a peptide-based interfacial biomaterial that will non-covalently coat the surface of the conducting polymer polypyrrole, allowing the implant to interact with the nervous system through both electrical and chemical cues. Starting with a candidate peptide sequence discovered through phage display, we used computational simulations of the peptide on polypyrrole to describe the bound peptide structure, explore the mechanism of binding, and suggest new, better binding peptide sequences. After experimentally characterizing the polymer, we created a molecular mechanics model of polypyrrole using quantum mechanics calculations and compared its in silico properties to experimental observables such as density and chain packing. Using replica exchange molecular dynamics, we then modeled the behavior of affinity binding peptides on the surface of polypyrrole in explicit water and saline environments. Relative measurements of the contributions of each amino acid were made using distance measurements and computational alanine scanning. / text
116

Affinity Determination of Protein A Domains to IgG subclasses by Surface Plasmon Resonance

Nohldén, Sofia January 2008 (has links)
A capture step with protein A is the most common purification step in the downstream purification process of monoclonal antibodies. It is therefore of great importance to increase the knowledge of the interactions involved in this purification technique. The purpose of this master thesis project was to determine the affinity of protein A domains to IgG subclasses by surface plasmon resonance (SPR). Besides the five homologous IgG-binding protein A domains (E, D, A, B, and C) an engineered domain, similar to domain B and used in the protein A media MabSelect Sure™ (GE Healthcare) was included in the study. The domains were expressed in E.coli, affinity purified and immobilized onto sensor chip surfaces by amine coupling. The antibodies used in the interaction analyses were of the human IgG subclasses 1, 2, 3, and 4. Affinity determination was performed by kinetic analyses with the SPR-biosensor Biacore™ 2000. All human IgG subclasses except IgG3 were shown to bind to all protein A domains including the monomer of the SuRe ligand. The equilibrium constants, KD-values, obtained were all in the low nanomolar range. For IgG1 and IgG4, no significantly differences in the affinity to any of the protein A domains were found, except for domain E where there might be quality issues of the prepared domain. Furthermore, a detected quality issue with the commercial IgG2 made it impossible to determine the KD-values for this subclass with any reliability.
117

Brand Analyses of Global Brands Versus Local Brand in Indian Apparel Consumer Market

Sengupta, Aniket 01 January 2014 (has links)
The purpose of this study was to conduct brand analyses on global brands in comparison to local retailers in India taking into account the regional differences and Indian consumers’ affinity towards global brands. The study has derived its conceptual framework from previous work done by Lee, Knight, and Kim (2008) and Bhardwaj, Kumar and Youn-Kyung (2010) with some added attributes. Quantitative data included a sample of 194 subjects where the sampling was conducted randomly as well as the involvement of convenient method to analyze the brands in real-world scenario. The survey involved the questionnaire which was utilized in previous researches and analyzed under the light of statistical treatment. The results confirm the importance of global brands (influence of European brand over American brand) over local brand in the Indian apparel consumer market.
118

A Method for Selective Concentrating of DNA Targets by Capillary Affinity Gel Electrophoresis

Chan, Andrew 02 August 2013 (has links)
A method for the selective concentrating of DNA targets using capillary affinity gel electrophoresis is presented. Complementary ssDNA targets are retained through hybridization with oligonucleotide probes immobilized within polyacrylamide gels while non-complementary targets are removed. The captured DNA targets were concentrated by step elution, where a localized thermal zone was applied in small steps along the capillary. Evaluation of the selective capture of a 150 nt DNA target in a complicated mixture was carried out by factorial analysis. Gels with a smaller average pore size were found to retain a higher amount of complementary targets. This was thought to be due to the ssDNA target migrating through the gel by reptation, eliminating hairpin structures, making the complementary region of the target available for hybridization. This method was applied to a series of DNA targets of different lengths, 19 nt, 150 nt, 250 nt and 400 nt. The recovery of the method ranged from 0.5 to 4% for the PCR targets, and 13 to 18% for the 19 nt oligonucleotide target. The purity was calculated to be up to 44% for the PCR targets and up to 86% for the 19 nt target. This was an improvement in purity of up to 15 times and 1100 times in comparison to the original samples for the PCR targets and 19 nt oligonucleotide, respectively. The 19 nt targets were selective concentrated and delivered into a microfluidic based DNA biosensing platform. The purity of the sample improved from 0.01% to 50% while recovery decreased from 100% to 20% for a sample with 0.5 nM complementary and 1 μM non-complementary targets. An improvement in the response of the sensing platform was demonstrated on 19 nt oligonucleotide targets delivered by selective concentration versus concentration alone into the microfluidic biosensing system.
119

A Method for Selective Concentrating of DNA Targets by Capillary Affinity Gel Electrophoresis

Chan, Andrew 02 August 2013 (has links)
A method for the selective concentrating of DNA targets using capillary affinity gel electrophoresis is presented. Complementary ssDNA targets are retained through hybridization with oligonucleotide probes immobilized within polyacrylamide gels while non-complementary targets are removed. The captured DNA targets were concentrated by step elution, where a localized thermal zone was applied in small steps along the capillary. Evaluation of the selective capture of a 150 nt DNA target in a complicated mixture was carried out by factorial analysis. Gels with a smaller average pore size were found to retain a higher amount of complementary targets. This was thought to be due to the ssDNA target migrating through the gel by reptation, eliminating hairpin structures, making the complementary region of the target available for hybridization. This method was applied to a series of DNA targets of different lengths, 19 nt, 150 nt, 250 nt and 400 nt. The recovery of the method ranged from 0.5 to 4% for the PCR targets, and 13 to 18% for the 19 nt oligonucleotide target. The purity was calculated to be up to 44% for the PCR targets and up to 86% for the 19 nt target. This was an improvement in purity of up to 15 times and 1100 times in comparison to the original samples for the PCR targets and 19 nt oligonucleotide, respectively. The 19 nt targets were selective concentrated and delivered into a microfluidic based DNA biosensing platform. The purity of the sample improved from 0.01% to 50% while recovery decreased from 100% to 20% for a sample with 0.5 nM complementary and 1 μM non-complementary targets. An improvement in the response of the sensing platform was demonstrated on 19 nt oligonucleotide targets delivered by selective concentration versus concentration alone into the microfluidic biosensing system.
120

Fabrication and characterisation of affinity-bound liposomes

Tarasova, Anna, Optometry, UNSW January 2007 (has links)
In considering the concept of surface-immobilised liposomes as a drug release system, two factors need to addressed, the interfacial surface density of the liposomes for maximum drug loading and the stability of these liposomes to allow for controlled drug release. This thesis investigates a multilayer system for the affinity immobilisation of liposomes and their stability to various applied stresses. In the work presented here an allylamine monomer was used to create plasma coatings that were stable, thin and amine-rich. The aging studies using AFM showed these films to rapidly oxidise on exposure to water. The freshly deposited films were used for further surface modifications, by the covalent grafting of PEG layers of different interfacial densities under the conditions of varying polymer solvation. The AFM was used to measure the interaction forces between the grafted PEG layers and modified silica interfaces. It was found that the polydispersity of the PEG species resulted in bridging interactions of ???brush???-like PEG layers with the silica surface. These interactions were screened minimised by increasing the ionic strength of the solution. Although the densely grafted PEG layers were found to be highly protein-resistant by the XPS and QCM-D some minor protein-polymer adhesions were observed by the AFM. The densely anchored biotinylated PEG chains served as an optimum affinity platform for affinity-docking of NeutrAvidinTM molecules, which assembled in a rigid, 2-D layer as confirmed by the QCM-D. The submonolayer surface density of NeutrAvidin, as determined by Europium-labelling, was attributed to steric hindrance of the immobilised molecules. The final protein layer enabled specific binding of biotin-PEG-liposomes as a highly dissipative, dense and stable layer verified by tapping mode AFM and QCM-D. We found that these liposomes were also stable under a range of stresses induced by the shearing effects of water, silica probe and HSA layer at increased loads and velocities. The frictional response of the liposome layer also demonstrated the viscoelasticity and stability of these surface immobilised liposomes. Finally, the minimal adhesive interaction forces, as measured by the AFM, demonstrated the repellency of these liposomes to commonly found proteins, such as HSA.

Page generated in 0.067 seconds