• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of Ligand-Receptor Pairs Utilizing Polymerized Planar Supported Lipid Bilayers

Liang, Boying January 2013 (has links)
Artificial membranes composed of natural lipids are not stable when exposed to air/vacuum, surfactant, organic solvent, etc. Polymerizable lipids provide an opportunity to broaden the use of lipid membranes to study ligand-receptor pairs under harsh experimental conditions. This dissertation presents the utilization of polymerizable lipids in matrix assisted laser desorption and ionization-mass spectrometry (MALDI-TOF MS) for analysis of ligands bound to membrane receptors. This platform may be applied to rapid drug-screening for membrane receptors including transmembrane proteins. Bacterial toxins and their membrane receptors were used as model ligand-receptor pairs to demonstrate the feasibility of using polymerizable lipids to detect and identify ligands by MALDI-TOF MS. Cholera toxin B (CTB) was successfully detected bound to polymerized lipid membranes with incorporation of its membrane receptor, GM1, while no CTB was detected in non-polymerizable lipid membranes. This affinity capture platform based on poly(lipid) showed a high resistance to interferences. On-plate digestion of bound CTB was performed and 57% amino acid sequence coverage was achieved. Total internal reflection fluorescence microscopy (TIRF-M) was applied to compare CTB-GM1 binding affinity in polymerized and unpolymerized membranes. Under a static flow system, the binding between CTB and GM1 was found to be stronger in polymerized membranes than other membranes. However, the ligand concentration under a static flow system is not in excess and the apparent binding affinity is likely to be significantly different than the true value. The true binding affinity can be approached under a continuous flow system, however equilibration time was found to be too long to address experimentally. Membrane fluidity, which may be required to maintain the membrane receptor activity, is suppressed in poly(lipid) membranes compared to unpolymerized membranes. In order to maintain fluidity, a non-polymerizable lipid was mixed into a polymerized lipid. Fluorescence recovery after photobleaching (FRAP) data showed that fluidity of membrane composed of the mixed lipid was maintained compared to pure poly(lipid). Phase segregation of polymerized lipid and non-polymerizable lipid was detected by atomic force microscopy (AFM). CTB bound to GM1 in mixed lipid membranes was detected by MALDI-MS, indicating the mixed lipid membranes retain stability under MALDI-MS analysis conditions.
2

Studies of Ligand-Receptor Pairs Utilizing Polymerized Planar Supported Lipid Bilayers

Liang, Boying January 2013 (has links)
Artificial membranes composed of natural lipids are not stable when exposed to air/vacuum, surfactant, organic solvent, etc. Polymerizable lipids provide an opportunity to broaden the use of lipid membranes to study ligand-receptor pairs under harsh experimental conditions. This dissertation presents the utilization of polymerizable lipids in matrix assisted laser desorption and ionization-mass spectrometry (MALDI-TOF MS) for analysis of ligands bound to membrane receptors. This platform may be applied to rapid drug-screening for membrane receptors including transmembrane proteins. Bacterial toxins and their membrane receptors were used as model ligand-receptor pairs to demonstrate the feasibility of using polymerizable lipids to detect and identify ligands by MALDI-TOF MS. Cholera toxin B (CTB) was successfully detected bound to polymerized lipid membranes with incorporation of its membrane receptor, GM1, while no CTB was detected in non-polymerizable lipid membranes. This affinity capture platform based on poly(lipid) showed a high resistance to interferences. On-plate digestion of bound CTB was performed and 57% amino acid sequence coverage was achieved. Total internal reflection fluorescence microscopy (TIRF-M) was applied to compare CTB-GM1 binding affinity in polymerized and unpolymerized membranes. Under a static flow system, the binding between CTB and GM1 was found to be stronger in polymerized membranes than other membranes. However, the ligand concentration under a static flow system is not in excess and the apparent binding affinity is likely to be significantly different than the true value. The true binding affinity can be approached under a continuous flow system, however equilibration time was found to be too long to address experimentally. Membrane fluidity, which may be required to maintain the membrane receptor activity, is suppressed in poly(lipid) membranes compared to unpolymerized membranes. In order to maintain fluidity, a non-polymerizable lipid was mixed into a polymerized lipid. Fluorescence recovery after photobleaching (FRAP) data showed that fluidity of membrane composed of the mixed lipid was maintained compared to pure poly(lipid). Phase segregation of polymerized lipid and non-polymerizable lipid was detected by atomic force microscopy (AFM). CTB bound to GM1 in mixed lipid membranes was detected by MALDI-MS, indicating the mixed lipid membranes retain stability under MALDI-MS analysis conditions.
3

Applications of mass spectrometry to bacterial diagnostics: Affinity capture matrix assisted laser desorption/ionization mass spectrometry and polymerase chain reaction mass spectrometry

Kaleta, Erin January 2011 (has links)
This dissertation presents the application of mass spectrometry to the detection and characterization of microorganisms based on biomarker identification and DNA analysis. Two major topics are covered: affinity capture mass spectrometry using immunoassay methods and methods involving insertion of membrane receptors into polymerized planar supported lipid bilayers; and the application of mass spectrometry for use in clinical microbiology for the identification of microorganisms causing bloodstream infections. Affinity capture mass spectrometry on immunoassay-based platforms studied the capture of Protein A from Staphylococcus aureus , demonstrating capture that is both selective and sensitive. Experiments illustrated successful capture from a purified source and cell lysates. Affinity capture using receptors inserted into polymerized lipid bilayers was also performed using GM1 and cholera toxin subunit B, demonstrating the enhanced stability offered by polymerizing the lipid bilayers such that direct ionization could be performed. Detection of protein binding was achieved with mass spectrometry at low molar ratios of receptor, and enzymatic digestion experiments on the protein retained at the surface illustrated the ability to characterize the protein ligand bound, lending support to using this technique for reverse pharmacological applications. Lastly, experiments demonstrated that affinity capture of surface-bound proteins can also be used to extract cells from complex mixture prior to the polymerase chain reaction, illustrating utility as a pre-treatment for detecting microorganisms in blood samples. Mass spectrometry was applied to detection of microorganisms from blood culture bottles collected from patients with bloodstream infections. Polymerase chain reaction electrospray ionization and whole cell matrix-assisted laser desorption/ionization mass spectrometry were used to characterize hematopathogens. High diagnostic accuracy was demonstrated with respect to culture-based testing and these two platforms were compared considering accuracy in identification, time to result, and cost benefit analysis. The experiments presented here cover a broad range of detection strategies for identifying proteins and microorganisms. The affinity capture techniques describe the first application of peptide capture and polymerized bilayers for mass spectrometric analysis, and the clinical mass spectrometry work demonstrates validation of two emerging techniques and the first comparative study on both platforms simultaneously. All research presented here demonstrates promise for application of mass spectrometry in diagnostic biology.
4

Caracterització dels receptors de l'activador tissular del plasminogen (tPA) en càncer de pàncrees

Roda Noguera, Oriol 30 May 2006 (has links)
El càncer de pàncrees és altament agressiu i representa la cinquena causa de mort al mon occidental. Anteriorment, en el nostre laboratori, vam identificar que el receptor tissular del plasminogen (tPA) hi està sobre-expressat i juga un paper important el la progressió tumoral. En la present tesi hem profunditzat en l'estudi del mecanisme molecular de tPA i seus receptors en aquest càncer. En primer lloc hem caracteritzat en detall la interacció de tPA amb Annexina A2 (principal receptor de tPA en endoteli i altament expressada en pàncrees) demostrant que les dades publicades sobre la seqüència responsable de la interacció no eren correctes. A més a més hem caracteritzat les proteïnes de lisats cel·lulars pancreàtics que interaccionen amb tPA mitjançant un assaig pull down i posterior anàlisi proteòmic. de tot identificant un conjunt de possibles lligands de tPA. D'entre aquests hem seleccionat galectina 1, una lectina que mai s'ha descrit que interaccioni amb tPA, per realitzar la caracterització bioquímica i funcional del seu paper com a nou lligand de tPA en càncer de pàncrees. / Pancreatic cancer is a highly aggressive disease and represents the fifth cause of death in occidental world. Our laboratory has previously reported tissue type plasminogen activator (tPA) over expression in this cancer and its role in tumoral progression. During the present thesis we have studied tPA and its molecular mechanism through its receptors in this tumor.We have first characterized tPA interaction with annexin A2 (its main receptor in endothelium and highly expressed in pancreas). Our results showed that published data about the sequence responsible of this interaction was not correct. We have also identified a set of new putative tPA receptors in pancreatic cell lisates using a pull down assay and proteomic analysis. One of the proteins identified was galectin 1, a lectin with not know relation with tPA. We performed a biochemical and functional characterization of the interaction between these two proteins in pancreatic cancer.

Page generated in 0.072 seconds