• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude et simulation de la postcombustion turbulente des explosifs homogènes sous-oxygénés / Study and simulation of the turbulent afterburning of oxygen-deficient homogeneous high explosives

Courtiaud, Sébastien 30 November 2017 (has links)
En physique des explosifs, la postcombustion désigne la phase de combustion qui intervient après la fin de la détonation lorsque l’explosif considéré est initialement déficient en oxydant. Les produits de détonation, qui apparaissent sous la forme d’une boule de feu, peuvent alors à leur tour être oxydés, ce qui permet de libérer une quantité supplémentaire d’énergie dans l’écoulement et d’augmenter le souffle. Ce phénomène complexe est piloté par l’interaction entre des ondes de chocs, une zone de mélange turbulente créée par des instabilités hydrodynamiques de type Rayleigh-Taylor et Richtmyer-Meshkov, et une flamme de diffusion. Compte tenu de son effet significatif sur la performance d’une explosif, une bonne compréhension de la postcombustion est nécessaire afin de pouvoir la modéliser et déterminer avec précision les effets d’une charge donnée. A cette fin, des travaux, à la fois numériques et expérimentaux, ont été menés afin de mieux comprendre le processus de mélange intervenant dans les boules de feu puis le phénomène dans son ensemble. Afin de contourner les difficultés liées à la caractérisation des produits de détonation, cette étude s’est concentrée sur l’explosion de capacités sphériques sous pression qui permet de produire un écoulement similaire à celui provoqué par une détonation sphérique. Les résultats obtenus sont semblables à ceux de la littérature sur la postcombustion des explosifs et apportent un éclairage nouveau sur l’influence de certains paramètres tels que la masse de l’explosif ou les propriétés des perturbations initiant les instabilités. / In the field of high explosives, the afterburning corresponds to the combustion processes occurring right after the end of a detonation, when the explosive used is originally oxidizer-deficient. Its detonation products, which appears as a fireball, can then be oxidised. The additional energy that their combustion generates enhances the blast and improves the explosive performance. This complex phenomenon is driven by the interaction between shock waves, a turbulent mixing layer caused by the emergence of Raylegh-Taylor and Richtmyer-Meshkov instabilities, and a diffusion flame. Because of its significant influence on the blast, a good understanding of the afterburning is thus necessary in order to model and predict accurately the effects of a given explosive device. To this end, an experimental and numerical work was conducted in order to, first, better understand the mixing process inside fireballs and, then, the whole phenomenon. In order to avoid the difficulties due to the imprecise characterisation of the detonation products, this study focused on the explosions of pressurised vessels which produces a flow similar to the one following a spherical detonation. The results are in good agreement with the ones found in the literature about the afterburning of high explosives. They also shed a new light on the influence of some parameters such as the mass of the charge or the properties of the perturbations initiating the instabilities.
2

Simulations expérimentale et numérique des effets retardés d'une explosion en milieu clos et en présence de produits liquides

Munier, Laurent 12 October 2011 (has links)
Peut-on modéliser de manière fiable les effets collatéraux (en termes de quantité ou concentration de produits éjectés) et les conséquences d’une explosion en milieu clos, et en présence de produits chimiques liquides ? Pour répondre à cette vaste question, qui soulève spontanément de nombreux sous-problèmes, les travaux de thèse se sont déroulés en trois temps : 1/une étude qualitative et semi-quantitative du scénario général, afin de comprendre le déroulement chronologique des évènements, et d’émettre les hypothèses nécessaires à une modélisation, 2 /L’étude systématique des effets d’une explosion en milieu clos, en présence ou non de produits liquides. Avant de modéliser la dégradation du produit liquide soumis à une température et à une pression élevées, les expérimentations préliminaires ont en effet fait apparaître la nécessité de quantifier dans le temps et dans l’espace, les effets thermiques et mécaniques d’une explosion à volume constant, 3/L’élaboration de modèles 0D(t) à partir des conclusions précédentes afin, d’une part, d’estimer la durée de vie d’une phase liquide dans un environnement thermodynamique contraint et, d’autre part, de démontrer la possibilité de modéliser le problème global de manière réduite. En effet, le terme source d’un tel évènement ne peut être modélisé par une libération ponctuelle de produit : il s’agit d’une libération étendue dans le temps, par le biais d’un écoulement chaud a priori diphasique et de débit variable. Les couplages des phénomènes, observés expérimentalement, rendent nécessaires : 1 - Une modélisation instationnaire de l’évolution de la pression et une estimation du niveau de température atteint dans le volume d’étude, après détonation d’une charge explosive, 2 - Une modélisation de la libération de la phase liquide dans l’enceinte, sous forme de gouttes millimétriques ou de gouttelettes microniques 3 - Une modélisation instationnaire des transferts couplés de masse et d’énergie entre la phase liquide et la phase gazeuse en présence et prise en compte d’éventuelles réactions chimiques à haute pression et haute température 4 - Et enfin, une modélisation instationnaire des rejets à la brèche. L’étude d’une explosion à volume constant a montré qu’il est possible de modéliser de manière simple la montée continue en pression de l’enceinte par une fonction exponentielle croissante. Pour une configuration de référence donnée – explosion d’une sphère d’explosif dans un parallélépipède – la valeur maximale de pression est directement proportionnelle au taux de chargement en explosif, sur l’intervalle [0,01 – 0,6] kg/m3. Le passage à une géométrie différente ou plus complexe demande l’introduction d’un coefficient correctif pour traduire l’amplification (ou l’atténuation) de la combustion turbulente des produits de détonation avec l’air ambiant. En ce qui concerne le champ de température par contre, notre analyse a montré qu’il coexiste des zones chaudes et des zones dites « froides » et que la valeur de température homogène finale calculée à partir d’un code thermochimique ne peut constituer qu’une simple indication. Seule une estimation du volume respectif de ces zones a été proposée ici. Nous avons établi que les propriétés physico-chimiques des produits stockés sont un point clef du problème et on suppose ces données connues pour une gamme de produits chimiques liquides à pression ambiante, communément utilisés dans l’industrie. Seul le phénomène d’évaporation a été développé dans ce mémoire. L’introduction de réactions chimiques entre constituants se traduirait dans les modèles par des termes sources supplémentaires liés à l’apparition ou la disparition d’espèces. / Is it possible to model collateral effects due to an explosion (on a chemical facility for instance) occuring in a closed volume containing liquid chemical products storage units ?This thesis deals with a zerodimensionnal modelisation of such a 3D complex problem to asses the final thermodynamic state of chemical products released in the atmosphere. Developped sub-models take into account:- the unsteady time histories of the internal overpressure and temperature,- the unsteady liquid ejection (droplets sizes)- the unsteady modelisation of the local heat and mass transfers between the gas phase and the liquid phase- the unsteady ejection process of the resulting multiphase mixture in the environment.Models and sub-models are validated thanks to many experimental results.

Page generated in 0.0883 seconds