111 |
Agregados reciclados de resíduos de concreto: um novo material para dosagens estruturais / Recycled aggregates of concrete residues: a new material for dosage of structural concreteRodrigo Dantas Casillo Gonçalves 20 February 2001 (has links)
A maioria dos processos de fabricação de um produto geram resíduos. Quando não se dispõem de uma tecnologia para o seu reaproveitamento, certamente este material será depositado na natureza e poderá ocasionar inúmeros problemas ambientais. Este trabalho trata da reutilização dos resíduos de concreto como agregado, para dosagens de concreto estrutural. Na maioria das vezes, os agregados provenientes de resíduos são considerados materiais de baixa qualidade, isso ocorre pelo desconhecimento de suas propriedades e da tecnologia para seu emprego. Fazendo uma pesquisa bibliográfica, teórica e experimental, o objetivo deste estudo foi de uma maneira informativa, contribuir para o entendimento do material, caracterizando algumas propriedades do agregado e do concreto reciclado. / Most of making process of a product produces residue. When there isn\'t a technology to use it again, certainly this material will be deposited in nature and it can bring about countless environmental problems. This work presents the reuse of concrete residues as aggregate, for dosage of structural concrete. Most of times, the aggregates provenient from the residues are considered low quality materials, it occurs due to the lack of knowledge of its properties and technology for its use. Doing a bibliographical, theorical and experimental research, the objective of this study was, on an informative way, to contribute for understanding of the material, characterizing some properties of aggregate and the recycled concrete.
|
112 |
Thermal and structural behaviour of basalt fibre reinforced glass concreteBorhan, Tumadhir Merawi January 2011 (has links)
This study aims to produce a type of concrete with both good thermal and mechanical properties by using environmentally friendly and low cost materials. In addition, the resistance of this concrete to fire conditions was investigated. The experimental work comprises two parts. In the first part, recycled glass was used as a partial replacement for natural sand (at proportions 20%, 40% and 60%) together with basalt fibre having different volume fractions (0.1%, 0.3%, and 0.5%). The results obtained from the experimental work showed that the optimum content is 20% glass and at 28 days, there was a 4.23% and 15% enhancement in the compressive strength and the splitting tensile strength respectively. Above 20% glass there was a slight reduction (6.6% and 22%) in the compressive strength and the splitting tensile strength when 60% glass was used. The results also showed that when glass sand and basalt fibre content increase, there is a decrease in the thermal conductivity range from 4.35% to 50% at temperature levels between 60oC to 600oC. The structural behaviour of this type of concrete was investigated in the second part of this study by carrying out small-scale slab tests at ambient and elevated temperatures. The results show that there is an increase in the load carrying capacity above the theoretical yield line load, due to membrane action, for all percentages of glass and volume fractions of basalt fibre ranging from 1.35 to 1.68 for the slab tested at ambient temperature and from 3.13 to 3.26 for the slabs tested at elevated temperature. Also the slabs with higher glass sand and basalt fibre content had a higher load enhancement and failed at a higher displacement compared to the control mix.A comparison between the simplified method and the finite element software package ABAQUS showed that the ABAQUS model gives reasonable predictions for the load-vertical displacement and the temperature-displacement relationships at both ambient and elevated temperature conditions, while the simplified method gives conservative predictions for the maximum allowable vertical displacement for the slab at elevated temperature. A parametric study showed that a 10 mm cover depth is the optimum depth as well as the reinforcement temperature predicted reduced with increasing load ratio (applied load/yield line load).
|
113 |
Risk Determination and Outcomes in Equilibrium Macroeconomic ModelsGupta, Nupur 07 October 2021 (has links)
No description available.
|
114 |
Určení pracovního bodu či pracovní oblasti spolupracujících hydrodynamických čerpadel / Seting of Working Point of co-Operated Centrifugal PumpsSůkal, Jaroslav January 2011 (has links)
The aim of my diploma thesis is to create a computer program that will help planners to design pipe systems. The program enables to find the parameters of a pumping unit (such as flow, head, power, efficiency, dissipation etc.) in a parallel pipe system which even has two tanks with dissimilar height. Moreover, the program is able to “calculate” the parameters of pumps that have maximum efficiency so that the planner could easily compare the data and determine whether the pump is working near the optimal point. The introduction includes a short overview of issues connected with pumping equipment. The next part deals with a description of software solutions of individual problems. The thesis concludes with a manual of the designed computer program.
|
115 |
Etude expérimentale et modélisation du comportement mécanique d’un matériau agrégataire / Experimental study and modelling of the mechanical behaviour of an aggregate materialChatti, Marwen 10 December 2018 (has links)
Ce travail concerne l’étude expérimentale et la modélisation du comportement d’un matériau composite agrégataire utilisé comme simulant pour les explosifs à poudre polymérisée (PBX). Dans un premier temps, une large campagne d’essais expérimentaux a été menée en utilisant certains protocoles expérimentaux originaux. Ces essais comprennent, des essais de : traction, compression, traction/compression alternées, compression triaxiale, compression 0°-90°-0°, couloir, torsion et torsion confinée. Les résultats expérimentaux ont permis de mettre en évidence les différents aspects de comportement du matériau : anisotropie induite par l’endommagement, effectivité, viscoélasticité, boucles d’hystérésis, sensibilité à la pression hydrostatique et présence des déformations irréversibles. Dans un deuxième temps, un modèle de comportement viscoélastique plastique endommageable a été proposé en utilisant une formulation microplan. Ce modèle a été implémenté dans un logiciel de calcul par éléments finis (Abaqus/Standard). Les essais ont été ensuite simulés et les résultats ont été comparés aux données expérimentales puis discutés. Enfin, deux critères qui gouvernent la rupture des matériaux étudiés, ont été identifiés. Ces critères ont été initialement développés dans la littérature pour le béton qui présente une microstructure et un comportement global similaires à ceux des matériaux agrégataires. / This study deals with the experimental investigation and the modelling of the behaviour of an aggregate composite material used as a simulant for Plastic-Bonded Explosives (PBX). At first, a large experimental campaign was conducted using some original experimental protocols. These tests include: tension, compression, alternated tension/compression, triaxial compression, compression 0°-90°-0°, channel-die, torsion and confined torsion. The experimental results highlighted different aspects of behaviour: damage induced anisotropy, effectivity, viscoelasticity, hysteresis cycles, sensitivity to hydrostatic pressure and presence of irreversible strains. At second, a damageable viscoelastic plastic model was proposed using microplane formulation. This model was implemented in finite element software (Abaqus/Standard). The tests were then simulated and the results compared to the experimental data, and then discussed. Finally, two failure criteria that govern the failure of the studied materials were identified. These criteria were initially developed in the literature for concrete materials that present a microstructure and behaviour similar to those of aggregate materials.
|
116 |
Structural contribution of the fine particles present in the mastic of aggregates used to make recycled bases with foamed asphalt and asphalt emulsionCardozo, Luis, Mendoza, Miguel, Silvera, Manuel, Lazo, Guillermo 30 September 2020 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / The use of foamed asphalt as a technique that incorporates recycled bases stabilized with RAP is known, because it achieves important structural contributions. However, the component of aggregates, belonging to the fine fraction (through the # 200 mesh) takes special importance. This article seeks to develop a comparative analysis between the stabilizations of recycled foamed asphalt bases and asphalt emulsion. The importance of this study lies in analyzing the structural contribution of the fines fraction when comparing both stabilizations. For the present investigation, 48 pits were examined, where the combined granulometry of the RAP plus the granular base was evaluated. Here it was possible to identify a minimal presence of fines even within the recommended spindle for foamed asphalt mixtures, evidencing a deficit in indirect traction strength (ITS). The results obtained show, that a dry stability of 484.7 kg is achieved, and a conserved strength of 45% in the foamed asphalt. While in the asphalt emulsion a dry stability of 1862.1 kg and a conserved resistance of 70% is achieved. This demonstrates the impact on the structural behavior that have the fines fraction in stabilizations with foamed asphalt.
|
117 |
Quantifying the Conditioning Period for Geogrid-Reinforced Aggregate Base Materials Through Cyclic LoadingVickery, Chad Derrick 17 June 2020 (has links)
Geogrid reinforcement can improve the performance of pavements by stiffening the aggregate base material and decreasing pavement deformations. Understanding the effects of cyclic loading on the modulus of geogrid-reinforced base materials would help engineers better anticipate actual increases in the modulus of aggregate base materials under given traffic loads. The objective of this laboratory research was to investigate the effects of cyclic loading on the resilient modulus, the modulus to peak axial stress, the elastic modulus, and the modulus at 2 percent strain of geogrid-reinforced aggregate base materials. The scope of the research included two aggregate base materials (Wells Draw and Springville) having different particle-size distributions and particle angularity. Geogrid-reinforced and unreinforced specimens were subjected to conditioning periods consisting of cyclic loading ranging from 10 to 10,000 cycles. Immediately following cyclic loading, all specimens were tested using the quick shear portion of the American Association of State Highway and Transportation Officials T 307 (Determining the Resilient Modulus of Soils and Aggregate Materials). Specimen preparation involved material weigh-outs, compaction, and membrane applications. Specimen testing in the loading machine consisted of two testing portions, including cyclic loading and quick shear testing. The cyclic loading data were used to calculate the resilient modulus on 200-cycle intervals throughout the duration of the conditioning period. The quick shear data were used to calculate the peak axial stress, the modulus to peak axial stress, the elastic modulus and the modulus at 2 percent strain. For the Wells Draw material, the resilient modulus increases by 11 percent for the specimens with geogrid and increases by 8 percent for the specimens without geogrid as the number of load cycles increases from 1,000 to 10,000. For the Springville material, the resilient modulus increases by 2 percent for the specimens with geogrid and increases by 3 percent for the specimens without geogrid as the number of load cycles increases from 1,000 to 10,000. As with other studies, the results do not show a consistent or significant effect of geogrid reinforcement on the resilient modulus of the tested materials. The modulus at 2 percent strain has the most potential for consistently showing improvements to aggregate base materials due to both cyclic loading and geogrid reinforcement. For the Wells Draw and Springville materials, the modulus at 2 percent strain increases by 31 and 9 percent, respectively, as the number of load cycles increases from 10 to 10,000. Additionally, for the Wells Draw and Springville materials, the modulus at 2 percent strain of the specimens with geogrid is 23 and 46 percent, respectively, greater than that of the specimens without geogrid. The results show a consistent and significant positive effect of geogrid reinforcement on modulus at 2 percent strain of the tested materials. According to the modulus at 2 percent strain results, a sufficient conditioning period appears to occur at 5,000 cycles for the Wells Draw material and 10,000 cycles for the Springville material.
|
118 |
The Physiometrics of Inflammation and Implications for Medical and Psychiatric Research: Toward Empirically-informed Inflammatory CompositesMoriarity, Daniel, 0000-0001-8678-7307 January 2022 (has links)
Most psychoneuroimmunology research examines individual proteins; however, some studies have used summed score composites of all available inflammatory markers without evaluating the appropriateness of this decision. Using three different samples (MIDUS-2: N = 1,255 adults, MIDUS-R: N =863 adults, and ACE: N = 315 adolescents), this study investigates the dimensionality of eight inflammatory proteins (C-reactive protein (CRP), interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), fibrinogen, E-selectin, and intercellular adhesion molecule (ICAM)-1) and compares the resulting factor structure to a) an “a priori” factor structure in which all inflammatory proteins equally load onto a single dimension (a technique that has been used previously) and b) proteins modeled individually (i.e., no latent variable) in terms of model fit, replicability, reliability, temporal stability, and their associations with medical history and depression symptoms. A hierarchical factor structure with two first-order factors (Factor 1A: CRP, IL-6, fibrinogen; Factor 2A: TNF-α, IL-8, IL-10, ICAM-1, IL-6) and a second-order general inflammation factor was identified in MIDUS-2 and replicated in MIDUS-R and partially replicated in ACE (which unfortunately only had CRP, IL-6, IL-8, IL-10, and TNF-α but, unlike the other two, has longitudinal data). Both the empirically-identified structure and modeling proteins individually fit the data better compared to the one-dimensional “a priori” structure. Results did not clearly indicate whether the empirically-identified factor structure or the individual proteins modeled without a latent variable had superior model fit. Modeling the empirically-identified factors and individual proteins (without a latent factor) as outcomes of medical diagnoses resulted in comparable conclusions, but modeling empirically-identified factors resulted in fewer results “lost” to correction for multiple comparisons. Importantly, when the factor scores were recreated in a longitudinal dataset, none of the individual proteins, the “a priori” factor, or the empirically-identified general inflammation factor significantly predicted concurrent depression symptoms in multilevel models. However, both empirically-identified first-order factors were significantly associated with depression, in opposite directions. Measurement properties are reported for the different aggregates and individual proteins as appropriate, which can be used in the design and interpretation of future studies. These results indicate that modeling inflammation as a unidimensional construct equally associated with all available proteins does not fit the data well. Instead, empirically-supported aggregates of inflammation, or individual inflammatory markers, should be used in accordance with theory. Further, the aggregation of shared variance achieved by constructing empirically-supported aggregates might increase predictive validity compared to other modeling choices, maximizing statistical power. / Psychology
|
119 |
Effect of Ohio-Sourced Dolomite Filler on Low Water-to-Cement Ratio ConcreteBernard, Toni 05 May 2023 (has links)
No description available.
|
120 |
The Spatial Distribution of K-factor Values Across a Toposequence and a Soil Survey Map UnitTilligkeit, Jacqueline Elizabeth 01 July 2012 (has links) (PDF)
Rivers and streams are adversely affected by an increase in sedimentation in their waters from eroding land. High sediment loads in streams can bury fish eggs and prevent hatching, increasing nutrients in the water causing algae blooms, or even contaminating the water with heavy metals carried in or on the aggregates. The erodibility of soil is valuable knowledge to all land users so that we may predict soil loss and its potential to pollute streams. This is done by using the Revised Universal Soil Loss Equation (RUSLE). By predicting soil loss from a given landscape, land managers can take mitigation measures. The precision of the current scale available for soil erodibility (K-factor) by the US Department of Agriculture is not useful to small landowners or on a site-by-site basis. In California’s Central Coast, a grassland hillslope toposequence was investigated in a Los Osos-Diablo soil series complex. Geographic information systems software was used for spatial analysis of variation in the K-factor as well as interpolating areas that were not sampled. Analysis of soils’ particle size, infiltration rate, organic matter content, and structure across the toposequence allowed calculation of the soils’ K-factor values. K-factor values for the footslope, backslope, and shoulder were found to be statistically different from one another. All slope position’s average K-factor values were statistically different than the published Los Osos and Diablo series’ K-factor with the exception of the backslope which was not significantly different than Diablo’s K-factor value. The average of all K-factors was found not to be statistically different than the Los Osos’ K-factor but it was statistically different from the Diablo’s soil series K-factor. The USDA K-factors overestimated the predicted soil loss for the study site.
|
Page generated in 0.0602 seconds