151 |
Geophysical Imaging and Numerical Modelling of Fractures in ConcreteKatsaga, Tatyana 13 August 2010 (has links)
The goal of this research is to investigate the fundamentals of fracturing processes in heterogeneous materials such as concrete using geophysical methods and dynamic micromechanical models. This work describes how different aspects of fracture formation in concrete can be investigated using a combination of Acoustic Emission (AE) techniques, ultrasonic wave velocity imaging, and high resolution Computed Tomography (CT). Fracture formation and evolution were studied during shear failure of large reinforced concrete beams and compressive failure of concrete samples.
AE analysis includes studying complex spatial and temporal fracture development that precedes shear failure. Predominant microcrack mechanisms were analyzed at different stages of fracture formation. CT images were used to investigate the influence of concrete microstructure on fracture topography. Combined AE and CT damage evaluation techniques revealed different aspects of fracture development, thus expanding our understanding of AE events and their mechanisms. These images show how aggregate particles influence fracture nucleation and development. An emphasis has been placed on the role of coarse aggregates during the interlocking of fracture surfaces at transferring shear stresses.
Ultrasonic wave velocity and AE techniques have been applied to uniaxial compression tests of concrete with various aggregate sizes and strengths similar to that of the concrete beams. AE parameters, p-wave velocities, and stress-strain data have been analyzed concurrently to image damage evolution under compression. Influence of material composition on microcracking and material state changes during loading has been investigated in detail. The results of compressive tests were used as building blocks for developing realistic micromechanical numerical models of concrete.
The models were designed using a distinct element code, where material is modelled through the combination of bonded particles. A number of procedures were developed to transfer the exact microstructure of material incorporating its visual representation into the model. The models’ behaviour has been verified against experimental data. It was shown that these models exhibit realistic micromechanical behaviour. The results of the experimental investigation of concrete fracturing were expanded by modelling more cases with aggregate size and strength variations.
It was shown that geophysical imaging techniques, along with advanced micromechanical numerical modelling, can help us understand damage formation and evolution.
|
152 |
Alkali-silica reaction in concrete containing recycled concrete aggregatesAdams, Matthew P. 09 January 2012 (has links)
Using recycled concrete aggregate (RCA) as a replacement for natural aggregate in new concrete is a promising way to increase the overall sustainability of new concrete. This has been hindered, however, by a general perception that RCA is a sub-standard material due to the lack of technical guidance, specifically related to long-term durability, on incorporating RCA into new concrete. The goal of this research project was to determine whether current testing methods could be used to assess the potential alkali-silica reactivity of concrete incorporating RCA. The test methods investigated were ASTM C1260 and ASTM C1567 for assessing natural aggregate susceptibility to alkali-silica reactivity (ASR), and the ability of supplementary cementitious materials (SCMs) to mitigate ASR, respectively. Seven different RCA sources were investigated. It was determined that ASTM C1260 was effective in detecting reactivity but expansion varied based on RCA processing. Depending on the aggregate type and the extent of processing, up to a 100% increase in expansion was observed. Replicate testing was performed at four university laboratories to evaluate repeatability and consistency of results. The authors recommend modification to the mixing and aggregate preparation procedures, when testing the reactivity of RCA using ASTM C 1260.
This study also investigated the efficacy of replacing portland cement with supplementary cementitious materials (SCMs), known to mitigate alkali-silica reaction (ASR) in concrete with virgin aggregates, to control ASR in concrete incorporating reactive RCA. The SCMs investigated as part of this study included: fly ash (class F), silica fume, and metakaolin. The results of modified alkali-silica reactivity tests, ASTM C1260 and ASTM C1567 (AMBT), are presented for two different recycled concrete aggregates when using 100% portland cement, binary blends of portland cement and fly ash, and ternary blends of portland cement, fly ash and metakaolin or silica fume. The results indicate that SCMs can effectively mitigate ASR in concrete made with RCA. A 40% replacement of portland cement with class F fly ash was able to reduce expansions to below 0.10% in the AMBT for concrete containing 100% of a highly reactive recycled concrete aggregate. A ternary blend, however, of portland cement with a class F fly ash and metakaolin was most effective for both RCAs tested in this study. Higher levels of mitigation may be required for some RCAs, compared to the level required to mitigate ASR in concrete made with their original natural aggregates, depending on the age and composition of the RCA. / Graduation date: 2012
|
153 |
Concretos leves com agregados inovadores de argila vermelha calcinada e subprodutos agroindustriais / Lightweight concrete with innovative calcined clay lightweight aggregates with agro-industrial by-productsBruno Carlos de Santis 18 November 2016 (has links)
Este trabalho tem por objetivo o estudo de concretos leves com agregados inovadores de argila vermelha calcinada e subprodutos agroindustriais. A argila utilizada na pesquisa foi caracterizada por meio das técnicas de limites de liquidez (LL) e plasticidade (LP), análise granulométrica, análise química e difração de raios X (DRX). Foram confeccionados corpos de prova de argila vermelha calcinada com incorporações de serragem de madeira, cinza do bagaço da cana-de-açúcar e silicato de sódio. Os corpos de prova de argila vermelha calcinada, queimados à temperatura de 900 °C, foram caracterizados por meio da avaliação da retração linear, absorção de água, porosidade aparente, massa específica aparente, expansão por umidade e resistência à compressão. Após a caracterização dos corpos de prova de argila vermelha calcinada, foram produzidos dois tipos de agregados, sendo o primeiro composto por 57% de argila e 43% de cinza do bagaço de cana-de-açúcar, conformados com água e silicato de sódio (proporção 1:1), e o segundo composto por 70% de argila e 30% de serragem de madeira. Os corpos de prova de concreto leve foram caracterizados pelos ensaios de slump, massa específica fresca, resistência à compressão, módulo de deformação, retração por secagem, absorção de água, índice de vazios e massa específica aparente e condutividade térmica. Os resultados desta pesquisa indicam a viabilidade da produção de agregados leves de argila vermelha calcinada com incorporações de subprodutos agroindustriais para utilização em concretos, uma vez que, mesmo com grande quantidade de utilização de subprodutos agroindustriais na produção dos agregados leves, os concretos produzidos com esses agregados apresentaram características similares aos concretos produzidos com agregados comerciais, apresentando um ganho econômico e energético significativo. / This paper aims to study lightweight concrete with innovative calcined clay lightweight aggregates made with agro-industrial by-products. The clay used in this research was characterized by techniques of liquid and plastic limits, particle size analysis, chemical analysis and X-ray diffraction (XRD). Calcined clay specimens were made with incorporations of wood sawdust, sugar cane ash and sodium silicate. These specimens, burned at a temperature of 900°C, were characterized by evaluating of linear shrinkage, water absorption, apparent porosity, specific mass, moisture expansion and compressive strength. After characterization of calcined clay specimens, two types of calcined clay lightweight aggregates with agro-industrial by-products were produced, wherein the first made with 57% of clay and 43% of sugar cane ash, mixed with water and sodium silicate (proportion 1:1) and the second made with 70% clay and 30% wood sawdust, mixed with water and burned at 900 °C. Specimens of lightweight concrete were characterized by slump test, fresh specific mass, compressive strength, modulus of elasticity, water absorption, voids and bulk density and thermal conductivity. Results of this research indicates the viability to produce calcined clay lightweight aggregates made with agro-industrial by-products to use in concrete, even using large amount of agro-industrial by-products, once concretes made with lightweight aggregates with agro-industrial by-products presented similar characteristics than those made with commercial aggregates, presenting significant energetic gain.
|
154 |
Estudo do uso de agregado reciclado de resíduos de construção e demolição em misturas solo-agregado / Study of the use of recycled aggregate of construction and demolition waste in soil-aggregate mixturesMonigleicia Alcalde Orioli 24 July 2018 (has links)
A construção civil gera impactos ambientais que merecem atenção especial, uma vez que é uma das áreas que mais produz resíduos dentre as atividades econômicas. Os agregados reciclados de resíduos de construção e demolição podem ser utilizados em diversas áreas, apresentando desempenhos mecânico e hidráulico adequados quando comparados aos agregados naturais. Esta pesquisa consiste em estudar a viabilidade o uso de agregado reciclado misto (ARM) e misturas solo-ARM como materiais geotécnicos em camadas de bases e sub-bases de pavimentos. Para isso, foram realizados ensaios de caracterização física e comportamento mecânico. Para comparação, foram estudados também um agregado natural (AN) e uma mistura de solo-AN. Os resultados mostraram que a energia de compactação teve efeito positivo sobre o comportamento do ARM e misturas de solo-ARM. Observou-se ainda que o ARM apresentou ganho de resistência e rigidez devido ao efeito de auto-cimentação. No que se refere à adição de solo, as misturas de solo-ARM apresentaram uma diminuição no valor de CBR em relação a misturas compostas exclusivamente por ARM, contudo houve um aumento nas demais propriedades mecânicas. Com base nos resultados obtidos, pode-se concluir que o ARM e as misturas solo-ARM apresentam características físicas e comportamento mecânico adequados para uso em camadas de base e sub-base de pavimentos urbanos. / Civil construction generates environmental impacts that deserve special attention, since it is one of the areas that produces the most waste among economic activities. The recycled aggregates of construction and demolition waste can be used in several areas, presenting adequate mechanical and hydraulic performances when compared to natural aggregates. This research consists of studying the feasibility of using recycled mixed aggregate (RMA) and soil-RMA mixtures as geotechnical materials in base and sub-base layers of pavements. For that, tests of physical characterization and mechanical behavior were carried out. For comparison, a natural aggregate (NA) and a soil-NA mixture were also studied. The results showed that the compaction energy had a positive effect on the behavior of RMA and soil-RMA mixtures. It was also observed that the RMA showed strength gain and stiffness due to the self-cementing properties. Concerning soil addition, the soil-RMA mixtures presented a decrease in the CBR value in relation to mixtures exclusively composed by RMA, but there was an increase in the other mechanical properties. Based on the results obtained, it can be concluded that the RMA and the soil-RMA mixtures present physical characteristics and mechanical behavior suitable for the use in base and sub-base layers of urban pavements.
|
155 |
Alternativní kameniva na bázi druhotných surovin z energetického průmyslu / Alternative aggregates based on secondary raw materials from power industryKratochvíl, Jiří January 2014 (has links)
The current usage of both classical and fluid combustion ashes is not sufficient and they are deposited in large quantities. The focus of this master´s thesis is to determine and verify some possibilities of their suitable applications in construction industry, specifically as the alternative aggregates for concrete. After the performed analysis several systems based on both classical and fluid combustion ashes have been proposed. Portland cement and hydrated lime were used as admixtures and binding properties of fluid combustion ashes were also tested. The most important properties were compressive strength and bulk density. The aim was to appropriate an optimal ratio between the addition of modifying substance and resulting strength of prepared aggregate in order to correspond to standards for aggregates for concrete.
|
156 |
Betong med återvunnen betong som ballast : En experimentell studie om de mekaniska egenskaperna / Recycled aggregate concrete : An experimental study about the mechanical propertiesElghazzi, Jacoub, Fahlström, Pontus January 2020 (has links)
Det pågår just nu ett arbete inom byggindustrin att allt mer gå över till en cirkulär ekonomi för att hushålla på världens naturliga resurser. För betongtillverkningen innebär det att försöka ersätta naturballast med återvunnen betong som ballast. Men för tillfället finns det lagkrav som förhindrar att naturballast helt ska kunna ersättas av återvunnen betong som ballast. Det är för att det finns vissa fysikaliska egenskaper, så som att porositeten ökar, som gör att de mekaniska egenskaperna blir sämre när naturballast ersätts med återvunnen betong som ballast. Detta examensarbete utfördes genom experimentella studier. Undersökningen utfördes i mekanik- och betonglaboratorium på Högskolan i Borås. Det utfördes en storskalig gjutningsserie där betongavfall från Ulricehamns Betong AB (UBAB) och Hedareds Sand & Betong AB (HEDA) prövades som ballastersättare till 50 och 100 %. För samtliga försök uppmättes både sättmått och betongens mekaniska egenskaper. Resultaten från betong med återvunnen betong som ballast (RAC) jämfördes med referensbetongen. Referensbetongen är baserad på ett känt- och beprövat originalrecept från UBAB respektive HEDA. Betongen med återvunnen betong som ballast är baserad på modifieringar som gjorts på referensrecept. Målet med studien var att undersöka hur återvunnen betong som ballast i betongblandningen påverkar betongens mekaniska egenskaper så som tryckhållfasthet, spräckhållfasthet och elasticitetsmodul. De testerna utfördes på gjutna cylindrar efter 28 dygn, tryckhållfastheten var också testad efter 7 dygn. Böjdraghållfasthet testades på balkar efter 28 dagar. Sedan utvärderades dessa resultat för att se hur de mekaniska egenskaperna förändras när en större del återvunnen betong som ballast används i recepten. Resultaten varierar litegrann för de olika provningarna. Denna studie styrker tesen att minskningen av tryckhållfastheten, efter 28 dagars härdning, som sker när återvunnen betong som ballast (RCA) används är inom intervallet 5–24 %. Provningarna av elasticitetsmodulen uppvisar liknande tendenser som tidigare forskning då betongen blir lite mindre styv när naturballast (NA) ersätts av RCA. Den styrker även tidigare forskning där böjdraghållfastheten är större vid ökade RCA-mängder. Då det för HEDA-recepten uppvisades en ökning med 9 procentenheter när all NA ersattes med RCA. Spräckhållfastheten uppvisade samma tendenser som böjdraghållfastheten. Det resultatet är däremot inte i linje med vad som har visats i tidigare forskning, då spräckhållfastheten har i de studierna minskat vid högre ersättningsandelar. / Work in the construction industry is currently underway to move to a circular economy to preserve the world’s natural resources. For concrete production this means trying to replace natural aggregate with recycled concrete aggregate. But for the time being there are standard allows that prevent natural aggregate from being completely replaced by recycled concrete aggregate. This is because there are certain physical properties, such as an increase in porosity, which have a negative impact on the mechanical properties when natural aggregate is replaced with recycled concrete aggregate. This thesis is carried out through experimental studies. The study was carried out in the mechanical and concrete laboratory at the University of Borås. Large scale castings were done where concrete waste from Ulricehamns Betong AB (UBAB) and Hedareds Sand & Betong AB (HEDA) were tested as aggregate replacers. For all experiments, both the measurement dimensions and the mechanical properties of the concrete was measured. The results from the recycled aggregate concrete were compared with the reference concrete. The reference concrete is based on an industrially active recipe from UBAB and HEDA. The Recycled Aggregate Concrete (RAC) is based on modifications made on reference recipes. The aim of this study was to investigate how recycled concrete aggregate in the concrete mix affects the mechanical properties of the concrete, such as compressive strength, splitting tensile strength and the modulus of elasticity. They were performed on cylinders at 28 days, the compressive strength was also performed at 7 days. The flexural strength was also tested. Those tests were performed on beams. Then these results were evaluated to see how the mechanical properties change when a greater replacement ratio is used in the recipes. The results vary slightly for the different tests. This study confirms that the decrease in compressive strength, after 28 days hardening, that occurs when Recycled Concrete Aggregate (RCA) is used is within the range 5–24%. The tests of the modulus of elasticity show similar tendencies as previous research because the concrete becomes a little less stiff when Natural Aggregate (NA) is replaced by RCA. It also corroborates previous research where the flexural strength is greater with increased RCA amounts. When the HEDA prescriptions showed an increase of 9 percentage when all NA was replaced with RCA. The splitting tensile strength exhibited the same tendencies as the flexural strength. On the other hand, this result is not in line with what has been shown in previous research, as the splitting tensile strength in those studies has decreased at higher replacement ratios.
|
157 |
Nové možnosti využití lehčených kameniv z druhotných surovin / Development od flooring systems with usage od lightweight aggregateJankovský, Jiří January 2012 (has links)
The work deals with the possibilities of lightening of the flooring system. Flooring system is solved by lightening the material. The surface layer is modified by lightweight fillers made from the waste materials, lightweight waste materials and fillers made from natural substances. Simultaneously is this work dealing with options of lightening the surface layer by microspheric fillers of separated waste fly ash.
|
158 |
Mécanismes d'action des fines et des granulats de verre sur la réaction alcali-silice et la réaction pouzzolaniqueIdir, Rachida January 2009 (has links)
Recycling composite glass with different colours in order to be manufactured into new glass products is at present not economically viable. Therefore, the search for new issues other than stockpile areas or dumping sites could be a serious opportunity. To a certain extent, one of the possible solutions is to use the recycled glass in manufacturing cements and in the preparation of concrete mixtures. However, it is essential to manage the two main behaviours that the glass can have when used in cement-based materials: (1) the use of glass as coarse aggregates reveals harmful behaviour related to alkali-silica reaction; (2) on the other hand, it can result in useful behaviour related to pozzolanic reaction if used as fine particles. Furthermore, the significant alkali content should not be overlooked as their mass corresponds to about 13% of the total mass of the glass and as they may activate the alkali-silica reaction. An experimental programme was conducted to provide answers to the various questions raised about the use of glass in cement-based materials. The first part of this work was primarily devoted to the evaluation of the reactive potential of glass in mortars (alkali and pozzolanic reactions). At this stage, nine classes of glass particles ranging from 3[mu]m to 2.5 mm were considered. Then, fine glass particles were used in order to counteract the negative effect of some classes of coarse aggregates having revealed alkali-reactive behaviour. The second part of this work was performed to study the mechanisms that could explain the behaviours of fine and coarse particles in aqueous and concentrated environments. Different answers have been proposed to explain the observed behaviour in terms of grain sizes of glass.
|
159 |
A Constraint-Based Approach to Predictive Maintenance Model DevelopmentGorman, Joe, Takata, Glenn, Patel, Subhash, Grecu, Dan 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / Predictive maintenance is the combination of inspection and data analysis to perform maintenance when the need is indicated by unit performance. Significant cost savings are possible while preserving a high level of system performance and readiness. Identifying predictors of maintenance conditions requires expert knowledge and the ability to process large data sets. This paper describes a novel use of constraint-based data-mining to model exceedence conditions. The approach extends the extract, transformation, and load process with domain aggregate approximation to encode expert knowledge. A data-mining workbench enables an expert to pose hypotheses that constrain a multivariate data-mining process.
|
160 |
The influence of percentage replacement on the aggregate and concrete properties from commercially produced coarse recycled concrete aggregateImmelman, Derick Wade 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The aim of this research is to investigate the potential use of coarse recycled concrete aggregate
(RCA) as a material in structural concrete. The lack of knowledge and specifications in South Africa
are the main reasons for this research of RCA. By increasing the database of research of RCA in
South Africa the possibility of specifications for this alternative building material can be initiated. The
implications of such specifications would lead to RCA acceptance in concrete design and therefore
reducing the amount of construction and demolition (C&D) waste accumulating at landfill sites and
decreasing the extraction of depleting natural aggregates.
The objectives that are achieved through this research project are firstly, what is the percentage
replacement of RCA to a concrete blend that will produce a material that achieves similar or better
results than a concrete blend containing natural aggregates. Secondly, what aggregate properties and
limits should be defined in the specification of RCA for it to be accepted as a material in concrete
mixtures. The objectives were assessed through examining the geometrical, physical and chemical
properties of the aggregate as a material and the fresh and hardened concrete properties of concrete
which contains RCA as a constituent.
RCA which was processed by a commercial recycling facility which produces concrete masonry units
was collected at three different instances. This material was reprocessed in the laboratory to control
the grading and amount of fine material not guaranteed by the recycling process. The RCA is then
combined with natural aggregate (NA) at the replacement percentages: 0, 15, 30, 50 and 100% which
is then used to examine the aggregate properties. It was determined that the physical properties of
RCA were dependent on the geometrical properties, while taking into consideration that the
geometrical properties are dependent on the source and method of recycling of the original C&D
waste. The chemical properties were established as dependent on the physical properties of the RCA. The RCA is then mixed with NA at the same replacement percentages together with other concrete
constituents to produce the concrete used to examine fresh and hardened concrete properties. The
fresh concrete properties investigated were: slump, slump loss, air content and fresh compacted
density. The hardened concrete properties studied were: compressive strength, tensile splitting
strength, oxygen permeability, water sorptivity, chloride conductivity, modulus of elasticity,
shrinkage and creep. The concrete properties were not significantly influenced by the inclusion of
RCA.
According to the aggregate and concrete properties examined in this investigation, the full
replacement of NA in structural concrete is possible and will improve the sustainable development of
the construction industry. / AFRIKAANSE OPSOMMING: Die doel van hierdie navorsing is om ondersoek in te stel na die potensiele gebruik van growwe
herwonne betonaggregaat (RCA) as ‘n materiaal in betonstruktuurontwerp. Die gebrek aan kennis en
spesifikasies in Suid Afrika is die vernaamste rede vir hierdie navorsing van RCA. Deur die
vermeerdering van die databasis van hierdie navorsing van RCA in Suid-Afrika kan die moontlikheid
van spesifikasies vir hierdie alternatiewe boumateriaal geïnisieer word. Die implikasie van sodanige
spesifikasies sou lei tot RCA aanvaarding in betonontwerp en dus die vermindering van die
hoeveelhede konstruksie en sloping (C&D) van afvalversameling by stortterreine en om die
ontginning van natuurlike aggregate te verminder.
Die doelwitte wat deur hierdie navorsingsprojek bereik word is eerstens, wat is die vervangings
persentasie van RCA in 'n betonmengsel wat produseer word wat dieselfde of beter resultate sal lewer
as 'n betonmengsel wat uit natuurlike aggregate bestaan. Tweedens, watter aggregaat eienskappe en
beperkings moet gedefinieer word in die spesifikasie van RCA sodat dit aanvaarbaar is as ‘n materiaal
in betonstruktuur ontwerp. Die doelwitte word geassesseer deur die ondersoek van die geometriese,
fisiese en chemiese eienskappe van die aggregaat as ‘n wesenlike materiaal en die vars en verharde
betoneienskappe van RCA as ‘n bestanddeel in struktuurbetonontwerp.
RCA monsters was geneem by ‘n kommersiele herwinningsfasiliteit wat RCA gebruik om betonsteen
eenhede te vervaardig, is op drie verskillende tydperke ingesamel. Hierdie materiaal is herverwerk in
die laboratorium om die gradering en die hoeveelheid van fyn materiaal wat nie deur die
herwinningsproses beheer is nie. Die RCA was dan gekombineer met NA teen
vervangingspersentasies van: 0, 15, 30, 50 en 100 % wat dan gebruik was om die eienskappe van die
aggregaat te ondersoek. Daar is vasgestel dat die fisiese eienskappe van die RCA afhanklik van die
geometriese eienskappe, met inagneming dat die geometriese eienskappe afhanklik is van die bron en
metode van die herwinning van die oorspronklike C&D afval. Dit is gestig dat die chemise
eienskappe is afhanklik van die fisiese eienskappe van die RCA. Die RCA is toe gemeng met NA teen dieselfde vervangingspersentasies saam met ander beton
bestanddele om beton te produseer wat dan vergelyk kan word met vars en verharde beton
eienskappe. Die volgende vars betoneienskappe is ondersoek: insinking, insinking verlies, luginhoud
en vars gekompakteerde digtheid. Die volgende verharde betoneienskappe is bestudeer:
druksterkte, trek die splintsing van krag, suurstofpermeabiliteit, water sorptiwiteit, chloride
geleidingsvermoё, modulus van elastisiteit, krimp en kruip. Die beton eienskappe was nie beduidend
beïnvloed deur die insluiting van RCA nie. Volgens die aggregate en beton eienskappe wat in hierdie navorsing ondersoek is, blyk dit dat die
volle vervangingswaarde van NA in strukturele beton moontlik is en die volhoubare ontwikkeling van
die konstruksiebedryf sal verbeter.
|
Page generated in 0.087 seconds