• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 167
  • 52
  • 27
  • 22
  • 12
  • 8
  • 7
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 535
  • 143
  • 120
  • 94
  • 77
  • 66
  • 60
  • 58
  • 53
  • 47
  • 47
  • 45
  • 41
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Structure and Application of Photosensitive Self-assembled Pseudoisocyanine J-aggregates on Membrane Surfaces

Mo, Gary Chia Hao 31 August 2011 (has links)
Understanding the assembly of monomeric components into specific molecular motifs is a central theme in materials and surface engineering. Motif designs, specifically using a controllable template, can yield materials with desired optical or electronic properties. The objective of this thesis is to understand the aggregate size, packing, and monomer orientation for the cationic dye, pseudoisocyanine. These organic molecules assemble into crystals in solution, on planar bilayer templates, and on the membranes of living cells. Pseudoisocyanine J-aggregates were found to form on top of the heterogeneous lipid domains in a phospholipid bilayer. This behaviour is limited to a few headgroup chemistries and lateral packing motifs, allowing one to control aggregation via a combination of these two factors. These aggregates are low-dimensional and display polymorphism. Using atomic force microscopy and visible-light spectroscopy, distinct optical characteristics can be correlated to different bilayer templated J-aggregate morphologies. The molecular packing of a similar J-aggregate crystal was resolved using both atomic force microscopy and selected area electron diffraction. The infrared absorption spectra of different polymorphs also displayed distinct differences. These separate examinations enabled a perspective that clarifies the geometry, packing, orientation, and size of templated J-aggregates. Insights into the templating of J-aggregates on the molecular scale reveals that they are sensitive reporters of membrane phase in adherent cells, and are compatible with established cell biology techniques. Lipid domains in live mammalian cells were visualized using fluorescent J-aggregates in combination with endogenous marker proteins of the endocytic process. Analysis of live cell images and additional biophysical work revealed that pseudoisocyanine J-aggregates formed on domains of the anionic lipid bis(monoacylglycerol)phosphate. Only by using J-aggregates can this lipid be shown to form well-ordered domains during endosomal maturation, leading to multivesicular body formation. These data demonstrate that a correlated optical and topographical approach is necessary to understand the structure of fluorescent molecular assemblies, and form the basis for utilizing such aggregates in a biological context.
82

Structure and Application of Photosensitive Self-assembled Pseudoisocyanine J-aggregates on Membrane Surfaces

Mo, Gary Chia Hao 31 August 2011 (has links)
Understanding the assembly of monomeric components into specific molecular motifs is a central theme in materials and surface engineering. Motif designs, specifically using a controllable template, can yield materials with desired optical or electronic properties. The objective of this thesis is to understand the aggregate size, packing, and monomer orientation for the cationic dye, pseudoisocyanine. These organic molecules assemble into crystals in solution, on planar bilayer templates, and on the membranes of living cells. Pseudoisocyanine J-aggregates were found to form on top of the heterogeneous lipid domains in a phospholipid bilayer. This behaviour is limited to a few headgroup chemistries and lateral packing motifs, allowing one to control aggregation via a combination of these two factors. These aggregates are low-dimensional and display polymorphism. Using atomic force microscopy and visible-light spectroscopy, distinct optical characteristics can be correlated to different bilayer templated J-aggregate morphologies. The molecular packing of a similar J-aggregate crystal was resolved using both atomic force microscopy and selected area electron diffraction. The infrared absorption spectra of different polymorphs also displayed distinct differences. These separate examinations enabled a perspective that clarifies the geometry, packing, orientation, and size of templated J-aggregates. Insights into the templating of J-aggregates on the molecular scale reveals that they are sensitive reporters of membrane phase in adherent cells, and are compatible with established cell biology techniques. Lipid domains in live mammalian cells were visualized using fluorescent J-aggregates in combination with endogenous marker proteins of the endocytic process. Analysis of live cell images and additional biophysical work revealed that pseudoisocyanine J-aggregates formed on domains of the anionic lipid bis(monoacylglycerol)phosphate. Only by using J-aggregates can this lipid be shown to form well-ordered domains during endosomal maturation, leading to multivesicular body formation. These data demonstrate that a correlated optical and topographical approach is necessary to understand the structure of fluorescent molecular assemblies, and form the basis for utilizing such aggregates in a biological context.
83

The roles of androgen receptor aggregates in embryonic stem cell differentiation

Hsiao, Po-Lun 15 February 2012 (has links)
Androgen receptor (AR) is a member of the steroid hormone receptor family of molecules, and expansion of a CAG repeat encoding polyglutamine (poly-Q) in AR gene are associated with a progressive neuromuscular disease known as spinal bulbar muscular atrophy (SBMA) or Kennedy disease. The hallmark of SBMA diseases is formation of juxtanuclear AR inclusions that have been termed ¡¥AR aggregates¡¦.Previous studies showed that transgenic mice overexpressing wild-type AR exclusively in the skeletal muscle fibers display similar abnormalities to those observed in models of SBMA disease. To elucidate the mechanisms underlying toxicity conferred by wild-type protein aggregation within normal cells, a mouse embryonic stem cell (ESC) model with non-genetic modified settings in AR overexpression was used to display the common features of polyglutamine disease in this experiment. It was found that wild-type AR proteins are highly expressed and form nuclear aggregate inclusions in response to androgen treatment in ES cells, the formation of AR aggregates inhibit the differentiation of embryonic bodys and enhanced caspase-3 activity in androgens -induced apoptosis. In addition, it was also investigated that relation between chaperones¡BAR and the endoplasmic reticulum (ER) stress-induced pathways in ES cells in this study, and it was found that chaperones could colocalize with AR aggregates, these findings may help us to better understand the roles of the chaperones on AR aggregates.
84

Discrete Element Modeling of Influences of Aggregate Gradation and Aggregate Properties on Fracture in Asphalt Mixes

Mahmoud, Enad Muhib Ahmad 2009 May 1900 (has links)
Aggregate strength, gradation, and shape play a vital role in controlling asphalt mixture performance. Many studies have demonstrated the effects of these factors on asphalt mixture performance in terms of resistance to fatigue cracking and rutting. This study introduces numerical and analytical approaches supported with imaging techniques for studying the interrelated effects of aggregate strength, gradation, and shape on resistance of asphalt mixtures to fracture. The numerical approach relies on the discrete element method (DEM). The main advantage of this approach is the ability to account for the interaction between the internal structure distribution and aggregate properties in the analysis of asphalt mixture response and performance. The analytical approach combines aggregate strength variability and internal force distribution in an asphalt mixture to predict the probability of aggregate fracture. The numerical and analytical approaches were calibrated and verified using laboratory tests on various aggregate types and mixtures. Consequently these approaches were used to: (1) determine the resistance of various mixture types with different aggregate properties to fracture, (2) study the effects of aggregate strength variability on fracture, (3) quantify the influence of blending different types of aggregate on mixture strength, (4) develop a mathematical expression for calculating the probability of aggregate fracture within asphalt mixture, and (5) relate cracking patterns (cohesive: aggregate - aggregate and matrix - matrix, and adhesive: aggregate - matrix) in an asphalt mixture to internal structure distribution and aggregate properties. The results of this dissertation established numerical and analytical techniques that are useful for developing a virtual testing environment of asphalt mixtures. Such a virtual testing environment would be capable of relating the microscopic response of asphalt mixtures to the properties of the mixture constituents and internal structure distribution. The virtual testing environment would be an inexpensive mean to evaluate the influence of changing different material and design factors on the mixture response.
85

Characterization of cement-kiln-dust stabilized base/subbase aggregate /

Zhu, Jianhua, January 1998 (has links)
Thesis (Ph. D.)--University of Oklahoma, 1998. / Includes bibliographical references (leaves 215-221).
86

Synthesis, stabilization, and controlled assembly of organic and inorganic nanoparticles for therapeutic and imaging applications

Tam, Jasmine Man-Chi 08 October 2013 (has links)
Nanoparticles have garnered much attention in pharmaceutical and biomedical fields because their small size and high surface area facilitate drug absorption, improve access to cells and organs, and enhance optical imaging. However, delivery of nanoparticles to the body is not always feasible or effective. Here, nanoparticle assemblies (flocs or clusters) for pulmonary drug delivery and biomedical imaging in cells are shown to facilitate delivery, interactions with cells, and manipulation of optical properties of inorganic/organic nanocomposites. The formation of aggregates by physical techniques and their mechanisms are described in detail. For pulmonary delivery, particles with aerodynamic diameters between 1-5 [mu]m deposit efficiently in the deep lungs. However, crystalline, non-porous, poorly water soluble drugs of this size require long dissolution times, limiting absorption by the body. Therefore, drug dissolution must be “decoupled” from deposition to improve absorption. To address this challenge, drug nanoparticles were dispersed within 4-[mu]m water droplets when administered via nebulization or as micron-sized flocs using a pressurized metered dose inhaler (pMDI). Upon deposition in aqueous media, the aerosolized nanoparticle assemblies dissociated into constituent nanoparticles, raising the available surface area for dissolution and increasing dissolution rates, relative to solid particles. Poorly water soluble drug nanoparticles were prepared using a controlled precipitation (CP) or thin film freezing (TFF) process, in which stable nanoparticles (30-300 nm in diameter) with high potencies (>90 wt% drug) were produced by rapidly nucleating drug solutions in the presence of strongly adsorbing polymers or by freezing, respectively. Amorphous, nanoparticles prepared by CP produced stable aqueous dispersions with high fine particle fractions (FPF) of 77% and total emitted doses (TED) of 1.5 mg/min upon nebulization. CP and TFF also produced anisotropic particles (aspect ratios >5), which formed stable suspensions in a hydrofluoroalkane propellant. Inefficient packing of anisotropic particles formed loose, open flocs that stacked upon each other to prevent settling. Upon pMDI actuation, atomized propellant droplets shear apart and template portions of the floc to yield porous particles with high FPFs (49-64%) and TEDs (2.4 mg/actuation). The controlled assembly of gold nanoparticles into clusters is also of great interest for biomedical imaging and therapy because clusters exhibit improved near infrared absorbance (where blood and tissue are most transparent), relative to single spherical particles, and can biodegrade into clearable particles. Gold nanoparticles (5 nm) were assembled into clusters between 30 to 100 nm in diameter with high gold loadings, resulting in strong NIR absorbance. The assembly was kinetically controlled with weakly adsorbing polymers by manipulating electrostatic, van der Waals, steric, and depletion forces. Furthermore, clusters assembled with a biodegradable polymer deaggregated back into primary particles in physiological media and within cells. This kinetic assembly platform is applicable to a wide variety of fields that require high metal loadings and small particle sizes. / text
87

The effect of expanded shale lightweight aggregates on the hydraulic drainage properties of clays

Mechleb, Ghadi 05 November 2013 (has links)
Fine grained soils, in particular clays of high plasticity, are known to have very low values of hydraulic conductivity. This low permeability causes several problems related to vegetation growth and stormwater runoff. One way to improve the permeability of clay soils is by using coarse aggregates as a fill material. Recently, Expanded Shale has been widely applied as an amendment to improve drainage properties of clayey soils. However, limited effort has been made to quantify the effect of Expanded Shale on the hydraulic conductivity or on the volume change of fine grained soils. Specifically, the field and laboratory tests required to quantify the amounts of Expanded Shale to be mixed with clays to obtain desired hydraulic conductivity values have not been conducted. This paper presents the results of a series of laboratory fixed-wall permeameter tests conducted on naturally occurring clay deposits in the Austin area with different plasticity. The testing program comprised of clay samples with different quantities of Expanded Shale aggregates by volume, ranging between 0 and 50%, and compacted at two different compaction efforts (60% and 100% of the standard Proctor compaction effort). The laboratory test results indicate that the hydraulic conductivity of the three soils increases by at least an order of magnitude when the Expanded Shale is mixed in quantities between 25 to 30% by volume depending on the compaction effort. Expanded Shale amended samples also showed lower swelling potential with increasing amendment quantities. Moreover, when the clay with the higher plasticity was mixed with 25% Expanded Shale, the compression and recompression ratios decreased by 25% and 15% respectively. / text
88

Investigating prokaryotic communities : group activities and physiological heterogeneity

Wessel, Aimee Katherine 02 March 2015 (has links)
Bacterial communities engage in social activities, exhibiting behaviors such as communicating with small signaling molecules (quorum sensing [QS]) and building antibiotic-resistant biofilms. The opportunistic human pathogen Pseudomonas aeruginosa produces both freely diffusible QS molecules, as well as a QS molecule that is packaged or transported across cell membranes via the production of outer membrane vesicles. Despite the ubiquity of vesicle production in bacteria, the mechanism of outer membrane vesicle production has not been fully elucidated. In addition, most of our understanding of QS and biofilm formation arises from in vitro studies of bacterial communities containing large numbers of cells, often with greater than 10⁸ bacteria. However, many bacterial communities are comprised of small, densely packed aggregates of cells (≤10⁵ bacteria), and it is unclear how group behaviors and chemical interactions take place in densely packed, small populations. This dissertation has two main goals: i) to provide insights into the mechanism of bacterial membrane vesicle production, and ii) to understand how population size and the spatial distribution of cells affect cell-cell interactions and the nutritional microenvironment within a small (≤10⁵ bacteria) prokaryotic community. / text
89

Methods development and measurements for understanding morphological effects on electronic and optical properties in solution processable photovoltaic materials

Ostrowski, David Paul 20 August 2015 (has links)
The effects of morphology on electronic and optical properties in solution processable photovoltaic (PV) materials have been studied through two different approaches. One approach, scanning photocurrent (PC) and photoluminescence (PL) microscopy, involved mapping PC generation and PL in functional PV devices on the length scale of around 250-500 nm. Additionally, local diode characteristics were studied from regions of interest in the PV through local voltage-dependent photocurrent (LVPC) measurements. In a PV made from a Copper Indium Gallium Selenide (CIGS) nanocrystal (NC) "ink", two morphological features were found to cause the spatial heterogeneity in PC generation. Cadmium Sulfide (CdS) aggregates lowered PC generation by blocking incident light to the photoactive layer, and cracks in the CIGS-NC film enhanced PC generation through improved charge carrier extraction. LVPC measurements showed all regions to have similar diode characteristics with the main difference being the PC generated at zero bias voltage. For another PV made from a donor/acceptor blend of poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,Nphenyl- 1,4-phenylenediamine (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole)(F8BT), two incident laser wavelengths were used to selectively illuminate only one or both polymers. The results showed that when F8BT is illuminated, the PFB-rich regions produced the most PC and when both polymers are illuminated (but mostly PFB), the F8BT-rich regions produce the most PC; showing PC generation is more affective when less absorber material is present in the morphology. The other approach to study morphological effects on PV properties was to fabricate particles that mimicked morphological variations known to occur in solution-processable PVs. Through solution processing of an oligothiophene molecule, a range of weakly coupled H-aggregate particles were made. These particles, identifiable by shape, were shown to have a varying degree of energetic disorder (as gauged by the 0-0 vibronic band intensity in the emission spectrum), despite all particles showing a similarly high degree of molecular order from fluorescence dichroism (FD) measurements. A trend was observed correlating a decrease in energetic disorder with an increase in the local contact potential (LCP) difference as measured with Kelvin probe force microscopy (KPFM). The LCP difference was found to range by 70 mV between particles of moderate to low energetic disorder.
90

An investigation into possible means of increasing the strength of lightweight high strength concrete

Edwards, Derek Oswald. January 1993 (has links)
published_or_final_version / Civil and Structural Engineering / Master / Master of Philosophy

Page generated in 0.0591 seconds