• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 14
  • 14
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Calibração de dados agrometeorológicos e estimativa de área e produtividade de culturas agrícolas de verão no estado do Paraná / Calibration of agrometeorological data, area and yield estimation for summer crops in Parana state

Johann, Jerry Adriani 19 August 2018 (has links)
Orientadores: Jansle Vieira Rocha, Rubens Augusto Camargo Lamparelli / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-19T17:37:26Z (GMT). No. of bitstreams: 1 Johann_JerryAdriani_D.pdf: 49162183 bytes, checksum: 407391759a8e7315491a3e601e3a1530 (MD5) Previous issue date: 2012 / Resumo: O caráter subjetivo dos levantamentos oficiais de produção não permite uma análise quantitativa dos erros envolvidos nem o conhecimento da sua distribuição espacial. Soluções visando à definição de metodologias mais eficazes, com menor custo, e que permitam um estudo em escala regional das estimativas agrícolas (área cultivada e produtividade) têm sido estudadas com o uso de geotecnologias. Neste trabalho, foram utilizadas imagens multitemporais do índice de vegetação EVI/MODIS, entre os anos-safra 2004/05 e 2007/08 no estado do Paraná, com o objetivo de mapear/estimar as áreas (máscaras) com as culturas de verão mais importantes (soja e milho) e estimar a produtividade da soja com modelos espectrais e mistos regionais. Também foram utilizados dados decendiais da radiação solar global, evapotranspiração de referência, temperatura média do ar e precipitação pluvial do ECMWF e de Superfície (SIMEPAR, INMET, SUDERSHA) para calibração entre as duas fontes, a fim de utilizá-los nos modelos mistos de estimativa de produtividade. Para geração dos modelos de produtividade espectrais e mistos foram selecionados 40 municípios. Para os modelos espectrais, as variáveis foram geradas ao longo do ciclo produtivo, a partir dos perfis temporais de EVI médios municipais. Para os modelos mistos, foram geradas variáveis dos dados calibrados do ECMWF por fase fenológica da soja. A seleção das variáveis deu-se pelo método estatístico stepwise para posteriormente, serem modeladas por regressão. Como resultados, foram geradas máscaras anuais destas culturas de verão, que comparadas por município, com os dados oficiais do IBGE, mostraram bons ajustes (R²>0,84; d >0,95; c>0,85) e ótima exatidão espacial (EG>92,8% e IK>0,86) utilizando com referência terrestre, imagens LANDSAT 5/TM e AWiFS/IRS. O procedimento de calibração dos 303 pixels do ECMWF sobre o estado foi realizado por meio de modelos de regressão linear simples de 10 anos de dados (2000 a 2009). Todas as variáveis agrometeorológicas estudadas, com exceção de precipitação pluvial, apresentaram elevada acurácia (d, MAE, RMSE) e precisão (R2, r) e pequena tendência (ou viés) (Es). A variável com melhor ajuste foi a temperatura média do ar, seguida pela evapotranspiração de referência e radiação solar global, com valores de c iguais a 0,83; 0,81 e 0,76, respectivamente. A calibração dos dados do ECMWF em relação à precipitação pluvial não foi significativa provavelmente devido à alta variabilidade espacial mensurados na superfície. As estimativas de produtividade de soja, obtidas por meio dos modelos espectrais, apresentaram menor acurácia (MAE, RMSE, MAPE) e precisão (r, R²) quando comparados aos obtidos pelos modelos mistos, corroborando com os resultados da literatura que indicam melhora no desempenho dos modelos de produtividade com a inserção de dados agrometeorológicos. Comparado aos dados oficiais, as estimativas realizadas pelos modelos espectrais e mistos não apresentaram tendência de subestimação e superestimação de produtividade. Como conclusões, verificou-se que a metodologia proposta para geração das máscaras foi eficiente e pode ser utilizada para um mapeamento em escala estadual, dentro das limitações da resolução espacial que caracteriza as imagens EVI/MODIS (250m). Foi possível e necessária a calibração dos dados estimados pelo ECMWF para as variáveis radiação solar global, evapotranspiração de referência e temperatura média do ar no Paraná. Não foi possível a calibração dos dados de precipitação pluvial devido à elevada variabilidade espacial mensurada pelas estações de superfície / Abstract: The subjective approach of official crop production surveys doesn't allow the quantification of errors and spatial distribution of crop areas. Studies have been carried out to find solutions for new, more efficient and lower cost methodologies for regional scale crop forecast (area and yield) using geotechnologies. In this study multitemporal EVI/MODIS images were used for the 2004/2005 and 2007/2008 cropping seasons in the Paraná State, Brazil, aiming at mapping/estimating area (masks) of summer crops (soybean and corn) and estimate soybean yield with spectral and regional agrometeorological/spectral (combined) models. Dekadal data of global solar radiation, reference evapotranspiration, mean air temperature and rainfall from the ECMWF model and surface (ground stations) were intercalibrated in order to use in the combined models of yield estimation. The models were applied to 40 municipalities. For the spectral models the variables were generated throughout the crop cycle from the mean EVI temporal profile by municipality. For the combined models the ECMWF calibrated variables were generated for each phenological phase of soybean. The variables selection were carried out using Stepwise method followed by regression. As results summer crop masks were generated by municipality and, comparing to official IBGE figures, reached good fitting (R² > 0,84; d > 0,95; c > 0,85) and very good spatial accuracy (Global Accuracy > 92,8% e Kappa index > 0,86) using as reference Landsat5/TM and AWiFS/IRS images. The calibration procedure of the 303 pixels of the ECMWF data over the state was done by simple linear regression models of 10 year period of data (2000-2009). All agrometeorological variables studied, except rainfall, showed high accuracy (d, MAE, RMSE) and precision (R2, r) and low trend (bias) (Es). The best fit variable was mean air temperature, followed by reference evapotranspiration and global solar radiation, with c values of 0.83; 0.81 and 0.76, respectively. The ECMWF calibration of rainfall were not significant probably due to high spatial variability of surface measurements. The soybean yields estimation obtained using the spectral models showed the worst accuracy (MAE, RMSE, MAPE) and precision (r, R²) compared to combined (spectral and agrometeorological) model approach, in agreement with the literature results that indicate better performance in yield models with the inclusion of agrometeorological data. Estimates by spectral and combined models showed no systematic error compared to official data, once Willmott agreement [d] values were, for all models, near 1, almost on the line 1:1. As conclusions, the proposed methodology for mask generation was efficient and can be used at state level scale, within the limitation of the EVI/MODIS images spatial resolution (250m). It was possible and necessary the calibration of data estimated by ECMWF model for the variables global solar radiation, reference evapotranspiration, and mean air temperature. It was not possible to calibrate rainfall data due to high spatial variability of surface data measured by meteo ground stations / Doutorado / Planejamento e Desenvolvimento Rural Sustentável / Doutor em Engenharia Agrícola
12

Utilização de dados espectrais do satelite NOAA14/AVHRR como fonte de dados para modelos matematicos de estimativa da fitomassa da cana-de-açucar / NOAA14/AVHRR spectral data as data source for fitomass models

Pellegrino, Giampaolo Queiroz, 1968- 01 August 2001 (has links)
Orientadores: Hilton Silveira Pinto / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola / Made available in DSpace on 2018-08-06T12:47:03Z (GMT). No. of bitstreams: 1 Pellegrino_GiampaoloQueiroz_D.pdf: 2312266 bytes, checksum: 34a16f3f5f7f7b5e8411dd4e26a5f12b (MD5) Previous issue date: 2006 / Resumo: Este trabalho foi desenvolvido na região de Guariba-SP e teve como objetivo principal acompanhar o desenvolvimento fenológico da cana-de-açúcar (Saccharum spp), através de medidas de campo e do uso do satélite meteorológico NOAA14/AVHRR (National Oceanic and Atmospheric Administration/ Advanced Very High Resolution Radiometer), para a obtenção de dados para a utilização em modelos matemáticos de crescimento e de estimativa de Produção. Para atingir esse objetivo estabeleceram-se alguns passos intermediários: definir modelos de crescimento para os ciclos estudados e correlações entre parâmetros biofísicos da cultura, principalmente entre Índice de Área Foliar e Massa Seca; avaliar a correlação dos dados espectrais de campo com o Índice de Área Foliar e com a Produção de Massa Seca; e após a correção geométrica e atmosférica das imagens orbitais produzidas pelos satélites NOAA, em condições tropicais, avaliar a correlação dos dados espectrais orbitais com o Índice de Área Foliar e com a Produção de Massa Seca. As atividades de campo foram desenvolvidas na Usina São Martinho (21º 24¿ 7,0¿ S, 48º 08¿ 26,5¿ O), no município de Guariba, com o apoio do Centro de Tecnologia da Copersucar. Simultaneamente às passagens dos satélites, foram feitas medidas in situ de parâmetros meteorológicos e radiométricos da cultura. Visando a caracterização agronômica e o acompanhamento do desenvolvimento vegetal da cultura, foram medidas também as Massas Fresca e Seca dos Colmos e Folhas, além da estimativa da Área Foliar. Esses parâmetros foram utilizados em análises de regressão para a obtenção de modelos de crescimento e de estimativa da Produção de Massa Seca, ou Fitomassa da cultura, sendo relacionados aos dados espectrais de campo e do satélite NOAA14/AVHRR. A hipótese básica é que ciclos futuros da cultura podem ser acompanhados sem a necessidade de um grande número de visitas ao campo, concentrando-se, principalmente, no monitoramento por meio das imagens NOAA, através da determinação de Índices de Vegetação Orbitais. Foram realizados processamentos das imagens obtidas durante o período de coleta de dados no campo. Esses processamentos incluíram tanto a correção dos valores orbitais, devido aos efeitos atmosféricos, quanto a correção geométrica ou georreferenciamento das imagens. Os parâmetros Índice de Área Foliar e Produção de Massa Seca foram correlacionados entre si e com os Índices de Vegetação de Campo e Orbitais por meio de métodos estatísticos de regressão, para estabelecimento das associações possíveis entre eles. Todos os ajustes de curvas aos dados de crescimento da cultura, ou seja, Índice de Área Foliar e Massa Seca, estimativa da Produção Instantânea e da Produção Final, apresentaram Coeficientes de Determinação acima de 0,90. Regressões lineares múltiplas correlacionando Massa Seca dos Colmos a Índices de Vegetação e Dias Após o Corte apresentaram Coeficientes de Determinação em torno de 0,83 e de 0,95, respectivamente, para os dados de campo e orbitais / Abstract: This work was carried out at Guariba-SP region. The main objective was to monitor the phonology of sugar cane (Saccharum spp), using field measures and images from the meteorological satellite NOAA14/AVHRR (National Oceanic and Atmospheric Administration/ Advanced Very High Resolution Radiometer), to obtain data for utilization in crop growing models and yield estimation. To reach this objective some intermediate steps were established: to determine crop growing models and the correlation between culture biophysical parameters, mainly for Leaf Area Index and Dry Matter; to evaluate the correlation between crop spectral data and Leaf Area Index or Dry Matter Production; and to evaluate the correlation between orbital spectral data and Leaf Area Index or Dry Matter Production after making the geometric and atmospheric correction for NOAA14/AVHRR in tropical condition. These field experiments were carried out in "Usina São Martinho" (21º 24¿ 7,0¿ S, 48º 08¿ 26,5¿ W), Guariba, São Paulo State, Brazil, with the support of Copersucar Technological Center. Simultaneously with the satellite passes, meteorological and radiometric field measurements were taken, over the sugar cane plantation. To obtain the agronomic characterization and to monitor the plant growth, Fresh and Dry Matter from the Steam and the Leaves were also measured. These parameters were used for regression analyses to obtain growing and phytomass models that were related to spectral data from the field and from the satellite NOAA14/AVHRR. The basic hypotheses is that the growing season can be monitored without the necessity of a great number of field samplings and based on NOAA images mainly, through the determination of Orbital Vegetation Indices. Image processing was made during the field-sampling period. This procedure includes the correction of atmospheric and geometric effects. Leaf Area Index and Dry Matter Production were correlated one to another and to Field and Orbital Vegetation Index by means of regression statistical methods to determine the association between them. All curve models for the sugarcane growing data, i.e., Leaf Area Index and Dry Matter Production, instantaneous Yield estimation, and season Yield, presented R2 above 0.90. Multiple Linear Regression correlating Dry Matter values to Vegetation Indexes and Growing Days presented R2 around 0.83 and 0.90 for field and orbital data, respectively / Doutorado / Agua e Solo / Doutor em Engenharia Agrícola
13

Mineração de dados climaticos para previsão local de geada e deficiencia hidrica / Data mining climatic for frost and deficit hidric forescast

Bucene, Luciana Corpas, 1974- 12 August 2018 (has links)
Orientadores: Luiz Henrique Antunes Rodrigues, Eduardo Delgado Assad / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola / Made available in DSpace on 2018-08-12T21:35:45Z (GMT). No. of bitstreams: 1 Bucene_LucianaCorpas_D.pdf: 2595416 bytes, checksum: 86c930f5cf0a3ca7ba03de8acb811ea8 (MD5) Previous issue date: 2008 / Resumo: As perdas que ocorrem na agricultura são grandes, devido, principalmente, à ocorrência de sinistros climáticos que ocorrem nas plantações. Muitas vezes, os impactos social e econômico causados pelos danos são significativos, uma vez que envolvem fatores como a produção e o preço de alimentos. Como exemplos, têm-se a produção de café e a de cana-de-açúcar no Estado de São Paulo, que sofrem alternâncias motivadas por eventos climáticos adversos e, em especial, as geadas e as secas, que reduzem drasticamente as produções. Neste sentido, este estudo propõe identificar relações entre parâmetros climáticos, como temperatura máxima, temperatura mínima, precipitação, entre outros atributos, visando descobrir eventuais novos conhecimentos, a partir do comportamento conhecido dos atributos climáticos já ocorridos no passado, com o propósito de desenvolver a previsão local de geada e a previsão de deficiência hídrica. Para isso, foram aplicadas técnicas de descoberta de conhecimento em grandes bancos de dados climáticos. Utilizaram-se as ferramentas WEKA e o DISCOVER, que foram consideradas satisfatórias, uma vez que os objetivos propostos foram atingidos. As bases de dados disponíveis atenderam a necessidade para a realização do projeto, apresentando um volume de dados e atributos suficientes para que pudesse gerar resultados para a previsão local de geada e de deficiência hídrica. Referente aos resultados, com até 1 dia de antecedência à geada, o modelo gerado foi considerado confiável. A partir de 2 dias de antecedência à geada, os resultados encontrados apresentam uma diminuição no grau de acerto quanto mais distante estiver de acontecer o evento geada. Para o caso deficiência hídrica, os resultados encontrados foram diferenciados conforme a classe. Para a classe não, com 1dia até 15 dias de antecedência ao evento, o grau de acerto foi alto e aceitável. A classe forte, em seguida à classe não, é a que apresenta melhores resultados de acerto, decaindo para as outras classes. Até 3 dias de antecedência ao evento deficiência hídrica e, dependendo do mês, o grau de acerto é aceitável. De 4 dias em diante, os resultados mostram que o modelo gerado não é aceitável / Abstract: The losses that occur in agriculture are high, mainly due to the occurrence of crop damages due to climatic events. Many times, the social and economic impacts caused by the damages are significant, since they involve factors such as the production and the price of foods. For example, coffee and sugarcane production in São Paulo State suffer alternations motivated by adverse climatic events and, in special, frost and drought, that greatly reduce the production. The purpose of this study is to identify relationships between climatic parameters, such as maximum temperature, minimum temperature, precipitation, etc., in order to discover eventual new knowledge, from known behavior of the climatic attributes already occurred in the past, with the objective of developing local frost and deficit water forecast models. To achieve this, data mining techniques were applied to climatic data bases. WEKA and the DISCOVER tools had been used and considered satisfactory, since they reached the objectives. The available databases were suitable for the accomplishment of the project, presenting enough volume of data and attributes so that it could generate results for the frost and water deficit forecast. Concerning to the results, with up to 1 day of antecedence to the frost, the generated model was considered trustworthy. From 2 days of antecedence to the frost the results present a reduction in the accuracy. For water deficit, results were differentiated, depending on the class. For the not class, from 1 to 15 days of antecedence to the event, the accuracy was high and acceptable. The strong class, following the not class, is the one that presents better results, falling down for the other classes. Up to 3 days of antecedence to the event water deficit and, depending on the month, the accuracy is acceptable. For 4 days or more in advance, the results showed that the generated model is not acceptable / Doutorado / Doutor em Engenharia Agrícola
14

Avaliação da influência da temperatura e da precipitação na ocorrência da ferrugem asiática da soja por meio da técnica de árvore de decisão / Evaluation of the influence of temperature and precipitation in the occurrence of Asian soybean rust by using the technique of decision tree

Megeto, Guilherme Augusto Silva, 1984- 07 October 2012 (has links)
Orientadores: Stanley Robson de Medeiros Oliveira, Carlos Alberto Alves Meira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-20T23:34:35Z (GMT). No. of bitstreams: 1 Megeto_GuilhermeAugustoSilva_M.pdf: 5556599 bytes, checksum: c545e13e7ec81e96cf9e6a3e46d01de2 (MD5) Previous issue date: 2012 / Resumo: A ferrugem asiática, causada pelo fungo Phakopsora pachyrhizi, atualmente é considerada uma das doenças mais importantes e agressivas da soja. A principal forma de controle é a aplicação calendarizada de fungicidas a qual desconsidera o risco de ocorrência da doença. Estudos epidemiológicos buscam compreender os fatores que influenciam na ocorrência e desenvolvimento das epidemias, especialmente aqueles relacionados ao ambiente tais como condições meteorológicas. Com o avanço da tecnologia da informação e do armazenamento de dados, técnicas de mineração de dados (data mining) apresentam-se promissoras para a descoberta de conhecimento em bases de dados epidemiológicos. Este trabalho tem como objetivo avaliar a influência da chuva e da temperatura na ocorrência da ferrugem asiática da soja utilizando árvores de decisão. Para tal, foram obtidos dados de ocorrências da doença em quatro safras, de 2007/2008 a 2010/2011, oriundos do banco de dados do Consórcio Antiferrugem, e dados meteorológicos, provenientes do sistema Agritempo. A análise exploratória dos dados permitiu obter subsídios para compor o conjunto de dados final e definir o escopo deste trabalho, buscando-se características intrínsecas à doença e sua interação com o ambiente, utilizando apenas variáveis de base meteorológica. As variáveis utilizadas foram relacionadas à precipitação e à temperatura, que deram origem a nove atributos avaliados para cada período temporal...Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: The Asian soybean rust, caused by Phakopsora pachyrhizi, is now considered one of the most important and aggressive diseases of soybean. The main form of control is the scheduled application of fungicides which disregards the the risk of disease occurrence. Epidemiological studies seek to understand the factors that influence the occurrence and development of epidemics, especially those related to the environment such as weather conditions. With the development of information technology and data warehousing, data mining techniques appear to be promising for knowledge discovery in epidemiological databases. This study aims to evaluate the influence of rainfall and temperature on the occurrence of soybean rust by using decision trees models. To accomplish that, data of the occurence of the disease were collected from four seasons, 2007/2008 to 2010/2011, from the Consórcio Antiferrugem and weather data from the Agritempo system. Exploratory data analysis allowed for obtaining subsidies to generate the final data set and define the scope of this work, seeking intrinsic characteristics of the disease and its interaction with the environment, using only meteorological variables. The variables used were related to precipitation and temperature, resulting into nine attributes evaluated in different periods. Such attributes were related to the event of occurrence (Oc) and non occurrence (NaoOc) of the disease (assumed as the thirtieth day prior to the event of occurrence). The results include a predictive model and an interpretive model for classifying events of occurrences and non occurrences of the disease...Note: The complete abstract is available with the full electronic document / Mestrado / Planejamento e Desenvolvimento Rural Sustentável / Mestre em Engenharia Agrícola

Page generated in 0.0863 seconds