• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 16
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Models of interference in monocultures and mixtures of wheat (Triticum aestivum L.) and quackgrass (Elytrigia repens (L.) Nevski.).

Wilcox, Douglas Howard 21 January 2009 (has links)
Quackgrass is the most serious perennial grassy weed of wheat in Manitoba. Field experiments and surveys investigating the nature and extent of interference in monocultures and mixtures of quackgrass and wheat were conducted over the years 1987 to 1989 at Portage La Prairie, Manitoba, Canada. Intraspecific and interspecific interference between spring wheat and quackgrass was investigated in the field using an additive series design consisting of five replacement series proportions at total stand densities of 75, 150, and 300 plants sqM. A revised synthetic no-interaction analysis determined that wheat was superior to quackgrass in both intraspecific and interpecific interference and that niche dedifferentiation was large. Quackgrass reproductive variable were less sensitive to interspecific interference than were vegetative variables. Surveys of commercial fields of spring wheat infested with quackgrass were conducted using a dynamic stratified random sampling design in which systematic samples were taken at approximately 30, 60 and 93 days after planting. Wheat yield loss, as a percentage of weed-free yield, (Yw%) was related to spring quackgrass shoot counts/m-2 (Qs) by a rectangular hyperbolic model of the form Yw% = 98.7(1-0.433(Qs)/100(1+(0.433(Qs)/193.7))). Wheat kernel weight was the wheat yield component most influenced by quackgrass infestation. In quackgrass populations the majority of new rhizome production occurred during wheat senescence and biomass partitioning to heads increased as quackgrass infestation increased. Allometric models of the relationship between quackgrass parts were site specific and generally became more accurate the later the sampling date. A set of models relating spring quackgrass infestation to yield losses in hard red spring wheat, flax, and polish canola were combined with allometric models in a multi-year spreadsheet (Lotus 1-2-3, v 3.1) model. Simulations run using the multi-year model demonstrated the potential of a spreadsheet model of assisting in weed control decisions. / October 1995
12

Models of interference in monocultures and mixtures of wheat (Triticum aestivum L.) and quackgrass (Elytrigia repens (L.) Nevski.).

Wilcox, Douglas Howard 21 January 2009 (has links)
Quackgrass is the most serious perennial grassy weed of wheat in Manitoba. Field experiments and surveys investigating the nature and extent of interference in monocultures and mixtures of quackgrass and wheat were conducted over the years 1987 to 1989 at Portage La Prairie, Manitoba, Canada. Intraspecific and interspecific interference between spring wheat and quackgrass was investigated in the field using an additive series design consisting of five replacement series proportions at total stand densities of 75, 150, and 300 plants sqM. A revised synthetic no-interaction analysis determined that wheat was superior to quackgrass in both intraspecific and interpecific interference and that niche dedifferentiation was large. Quackgrass reproductive variable were less sensitive to interspecific interference than were vegetative variables. Surveys of commercial fields of spring wheat infested with quackgrass were conducted using a dynamic stratified random sampling design in which systematic samples were taken at approximately 30, 60 and 93 days after planting. Wheat yield loss, as a percentage of weed-free yield, (Yw%) was related to spring quackgrass shoot counts/m-2 (Qs) by a rectangular hyperbolic model of the form Yw% = 98.7(1-0.433(Qs)/100(1+(0.433(Qs)/193.7))). Wheat kernel weight was the wheat yield component most influenced by quackgrass infestation. In quackgrass populations the majority of new rhizome production occurred during wheat senescence and biomass partitioning to heads increased as quackgrass infestation increased. Allometric models of the relationship between quackgrass parts were site specific and generally became more accurate the later the sampling date. A set of models relating spring quackgrass infestation to yield losses in hard red spring wheat, flax, and polish canola were combined with allometric models in a multi-year spreadsheet (Lotus 1-2-3, v 3.1) model. Simulations run using the multi-year model demonstrated the potential of a spreadsheet model of assisting in weed control decisions.
13

Models of interference in monocultures and mixtures of wheat (Triticum aestivum L.) and quackgrass (Elytrigia repens (L.) Nevski.).

Wilcox, Douglas Howard 21 January 2009 (has links)
Quackgrass is the most serious perennial grassy weed of wheat in Manitoba. Field experiments and surveys investigating the nature and extent of interference in monocultures and mixtures of quackgrass and wheat were conducted over the years 1987 to 1989 at Portage La Prairie, Manitoba, Canada. Intraspecific and interspecific interference between spring wheat and quackgrass was investigated in the field using an additive series design consisting of five replacement series proportions at total stand densities of 75, 150, and 300 plants sqM. A revised synthetic no-interaction analysis determined that wheat was superior to quackgrass in both intraspecific and interpecific interference and that niche dedifferentiation was large. Quackgrass reproductive variable were less sensitive to interspecific interference than were vegetative variables. Surveys of commercial fields of spring wheat infested with quackgrass were conducted using a dynamic stratified random sampling design in which systematic samples were taken at approximately 30, 60 and 93 days after planting. Wheat yield loss, as a percentage of weed-free yield, (Yw%) was related to spring quackgrass shoot counts/m-2 (Qs) by a rectangular hyperbolic model of the form Yw% = 98.7(1-0.433(Qs)/100(1+(0.433(Qs)/193.7))). Wheat kernel weight was the wheat yield component most influenced by quackgrass infestation. In quackgrass populations the majority of new rhizome production occurred during wheat senescence and biomass partitioning to heads increased as quackgrass infestation increased. Allometric models of the relationship between quackgrass parts were site specific and generally became more accurate the later the sampling date. A set of models relating spring quackgrass infestation to yield losses in hard red spring wheat, flax, and polish canola were combined with allometric models in a multi-year spreadsheet (Lotus 1-2-3, v 3.1) model. Simulations run using the multi-year model demonstrated the potential of a spreadsheet model of assisting in weed control decisions.
14

The Modeling and Measurement of Respiratory Carbon Use and Net Carbon Gain of Two Agropyron

Thorgeirsson, Halldor 01 May 1988 (has links)
The rate of photosynthetic carbon fixation and of root and shoot xiv respiratory carbon use was measured in the laboratory and in the field (shoots only) for Agropyron desertorum (Fisch. ex Link) Schult. and Agropyron spicatum (Pursh) Scribn. and Smith. The rate of respiratory carbon use of the root system declined within hours of the shading or defoliation of the shoot system, resulting in as much as 60% reduction in specific rate of root respiration. The mean whole-plant growth efficiency (the ratio of whole-plant net carbon gain to gross photosynthetic carbon fixation) in full irradiance in the laboratory was 0.53 and was reduced both by shading and defoliation. The mean conversion efficiency was o. 70 and o. 73, and the mean maintenance coefficient 20°c was 10.8 and 9.9 mmol C mol C-1 d-1 for A. desertorum and A. spicatum, respectively. These maintenance coefficients are lower than previously reported for fast growing crop plants. The rate of respiratory carbon use and the dynamics of labile carbon compounds were simulated both for intact plants and for plants regrowing following defoliation. The partitioning of assimilates between root and shoot was explicitly modeled to make the separate simulation of root and shoot respiration possible . The simulated daily net mobilization of labile carbon compounds exceeded carbon input from photosynthesis for only the first one-to-two days of regrowth, depending on the severity of the defoliation. The instantaneous rate of respiratory carbon use of the shoot system in the field during short-term light exclusion during the day was higher than the rate at the same temperature during the subsequent night. The Qio of shoot respiration was estimated to be 2.1-2.2. The mean growth efficiency in the field for the shoots only was 0.65 for sunny days. This efficiency was higher than the whole-plant growth efficiency in the laboratory because root respiration was not measured in the field .
15

Establishment of Tall Wheatgrass [Agropyron elongatum (Host) Beav. 'Jose'] and Basin Wildrye (Elymus cinereus Scribn. & Merr. 'Magnar') in Relation to Soil Water and Salinity

Roundy, Bruce A. 01 May 1983 (has links)
The potential of basin wildrye (Elymus cinereus Scribn. & Merr. 'Magnar') and tall wheatgrass [Agropyron elongatum (Host) Beav. 'Jose '] to establish on saline, arid rangelands in the Great Basin in relation to soil water and salinity was compared in field and laboratory experiments. Tall wheatgrass had higher emergence and establishment on a nonsaline and a saline soil (electrical conductivity of the saturation extract of 7 dS·m-1) over a range of spring precipitation as simulated by sprinkler irrigation. Basin wildrye will require supplemental irrigation to establish on soils of similar salinity. In the absence of precipitation, soil salinity increases and matric and osmotic potentials rapidly decrease as the surface soil dries in late spring. Germination and growth responses in relation to salinity and drought in laboratory experiments were consistent with emergence and establishment results in the field experiments. Tall wheatgrass had higher total germination, rate of germination and radicle growth under decreasing osmotic potentials and higher emergence under decreasing matric potentials than basin wildrye. Tall wheatgrass had greater root and shoot yield than basin wildrye when osmotic potentials in sand cultures were decreased by solutions of NaCl, Na2SO4 and CaCl2.Tall wheatgrass is more tolerant of salt and boron than basin wildrye, but basin wildrye is highly salt tolerant compared to most forage species. Tall wheatgrass had more rapid root elongation and more extensive root growth than basin wildrye seedlings grown in 60-cm soil columns filled with nonsaline and saline soil. Germination and growth of both species was reduced by ions in addition to the effects of water stress due to low osmotic potentials. Rate of germination and radicle growth of both species was less in salts than in isosmotic polyethylene glycol solutions. Seedlings exhibited less growth in saline than nonsaline soil even when plant water stress was minimal or when leaf water potentials were low but turgor was maintained by osmotic adjustment. Germination at low osmotic and matric potentials and root elongation in relation to salinity may be important plant responses to use in evaluating the potential for establishment of new plant materials on saline, arid rangelands.
16

Vegetation Characteristics of Wyoming Big Sagebrush Communities Historically Seeded with Crested Wheatgrass in Northeastern Great Basin, USA

Williams, Justin Rodney 01 May 2009 (has links)
Crested wheatgrass (Agropyron cristatum [L.] Gaertn.) is one of the most commonly seeded grass species in the western United States and dominates thousands of hectares in the Great Basin. Although many degraded Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) plant communities have been seeded with crested wheatgrass, successional pathways, influence of soil attributes, and cultivation history on the vegetation of these communities have not been fully characterized. I sought to identify community phases, vegetative differences, and soil attributes that explain variation among 35 Wyoming big sagebrush communities historically seeded with crested wheatgrass. All communities were more than 30 years old and had not experienced fire, or received subsequent chemical or mechanical treatments following their original seeding. Species richness, diversity, vegetation cover, and soil samples were measured in four 20 x 5 m intensive Modified Whittaker plots per community. Hierarchical clustering and principal component analysis of three indicator species (crested wheatgrass, Sandberg bluegrass, and Wyoming big sagebrush) identified four distinct community phases. Community phase 1 was dominated by crested wheatgrass and had the lowest species richness and cover of big sagebrush. Phases 2 and 3 had the highest species richness and cover of native species. Phase 4 was dominated by big sagebrush and had the lowest cover of crested wheatgrass. Community phases differed significantly for soil texture, soil nitrogen, and ground cover characteristics. Bare soil was almost double on loam-textured soils and rock cover was higher on clay loam texture soils (P < 0.05) as well as native plant cover. Communities previously cropped occurred on more coarse-textured soils and had 6-fold lower native species cover and double exotic herbaceous and crested wheatgrass cover. Cropping occurred on favorable, low rock, fine-texture soils, the same soils that favor crested wheatgrass production and reduce resilience of native plant composition. Delineation of community phases provided a new, empirically based state-and-transition model, while the characterization of soil attributes and disturbance history provided information about feedback mechanisms influencing dominant species that delineate community phases and effect community structure. This information can be used to assist in the development of management strategies in crested wheatgrass seeded communities.

Page generated in 0.0297 seconds