• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 4
  • 1
  • Tagged with
  • 41
  • 21
  • 20
  • 18
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Forming of AHSS using Servo-Presses

Groseclose, Adam Richard January 2014 (has links)
No description available.
22

Procedure and Results for Constitutive Equations for Advanced High Strength Steels Incorporating Strain, Strain Rate, and Temperature

Smith, Anthony Justin 16 August 2012 (has links)
No description available.
23

DEVELOPMENT OF SIMULATION TECHNOLOGY FOR FORMING OF ADVANCED HIGH STRENGTH STEEL

Chen, Xiaoming 04 1900 (has links)
<p>Advanced high strength steels (AHSS) exhibit significant higher springback and different fracture modes in forming processes and these problems cannot be accurately predicted using conventional simulation methods in many cases. In this thesis, new simulation technologies have been developed to improve the predictability for AHSS forming. The technologies integrated various aspects of simulation techniques, including development of material models and local formability criteria, calibration of the models with experimental data, and simulation method and parameter optimisations. Both laboratory and full scale parts were used to validate the simulation technologies developed. These technologies are originally applied to solve AHSS forming problems.</p> <p>The springback predictions have been significantly improved using the newly developed simulation technology. The technologies include the implementation of the smooth contact to reduce contact errors, modification of mass scaling to reduce dynamic effect, implementation of isotropic/kinematic hardening model and optimization of simulation parameters. Shear fracture (a stretch bending fracture on a small radius) have been successful predicted using Modified Mohr Coulomb (MMC) fracture criterion. Both laboratory experiments and full scale parts have been used to validate the predictions. Shearing and pre-forming effects on hole expansion and edge stretching have been investigated. A new approach was introduced to evaluate AHSS sheared edge deformation and quality by measuring material flow line angle change on a shearing edge. Shearing processes were simulated using MMC failure criterion and the sheared edge deformation has been integrated to hole expansion simulation to produce a more accurate prediction. The pre-forming effect on edge cracking has been investigated through both experiments and simulations. The limit strains have been measured by experiments. Simulation technology was also developed to predict surface strains of pre-form and subsequent stretching. Formulation of plane stress characteristics considering normal anisotropy have been developed and applied to analyze the flange deformations and optimum blanks for cup drawing. The method of plane strain characteristics has been used to predict earing throughout the entire cup drawing process.</p> / Doctor of Philosophy (PhD)
24

THE KINETICS OF SILICOTHERMIC AND CARBOTHERMIC MANGANESE REDUCTIVE ALLOYING FOR HIGH MANGANESE STEEL / MANGANESE REDUCTIVE ALLOYING

Jamieson, Brian 06 1900 (has links)
Fundamental research is required to support the commercialization of 3rd Generation Advanced High Strength steels (3G AHSS). Mid-manganese 3G AHSS steels can contain up to 11wt% manganese and are expensive if traditional ferroalloying practices are used; reductive alloying is a promising alternative. This study has researched the fundamental science behind possible processing methods. Silicothermic reduction of MnO from slag was studied. The reaction is fast but can be blocked by a stagnant layer of SiO bubbles cutting the rate of reaction by one order of magnitude. A theoretical model for mixed mass transport control was tested against original experimental data. Across nine datasets, the mass transfer coefficient for metal species, kMetal, was 2.3∙10-4m/s and the slag mass transfer coefficient, kSlag, was 6.7∙10-4m/s. In real industrial systems, gas blockage should not have an effect because stirring will dislodge these bubbles. Carbothermic reduction is dramatically different and has been qualitatively documented in this work. The reaction occurs in two stages: the first approximately three times faster than the second. The first stage is characterized by internal CO nucleation and growth and is rate-limited by the formation and growth of these CO bubbles. The second stage occurs along the metal interface and shows that the slag and metal are essentially separated by an intermediary gas phase. This reaction is controlled by decomposition of metal oxides at the gas-slag boundary, decomposition of CO2 at the gas-metal boundary, and transport of CO2 across the gas bubble; this mechanism is nearly identical to the carbothermic reduction of FeO. Reductive alloying can be utilized with the silicothermic reduction process to obtain high levels of manganese in steel but the carbothermic reduction may be too slow to be a viable process. / Thesis / Doctor of Philosophy (PhD) / 3rd Generation Advanced High Strength steels (3G AHSS) are a promising opportunity to produce steels with improved mechanical properties. These steels are alloyed with up to 11wt% manganese; traditional alloy additions are added as ferroalloys which may not be the most economical solution to achieve the required concentrations of manganese. Reductive alloying is a potential method for achieving high concentrations of manganese in the metal. By adding manganese oxide to slag, and reductants like carbon or silicon to the molten metal, manganese can be reduced from slag to metal. This work has determined the kinetics (rate of reaction) during the silicothermic and carbothermic reduction of manganese oxide from slag. The silicothermic reduction of manganese oxide is fast and can achieve high levels of manganese in the metal. The carbothermic reduction is much slower with questionable viability.
25

Fracture prediction of stretched shear cut edges in sheets made of Dual-Phase steel

Falk, Johannes January 2017 (has links)
Dual-Phase (DP) steels, part of the group of Advanced High Strength Steels (AHSS), are used by car manufactures due to its large strength to weight ratio. The high strength of the DP steel does have a negative impact on the formability during sheet metal forming and stretch forming, e.g. fractures often appear in shear cut edges during forming of blanks made of DP steel.   The main objective with this thesis is to develop a new punch for Volvo Cars that concentrates the strain to the sheared edges of a test specimen made from different types of DP steel. This is done to be able to measure and obtain maximum fracture strain during stretch forming tests in a press. The newly developed test method is called CTEST (Concentrated Trim Edge Strain Test).   The tests are performed with DP steel specimens with three different qualities of the shear cut edges; fine cut, medium cut and worn cut. DP steels tested are DP600GI, DP600UC and DP800GI from three different suppliers. 10 different types of DP steels are tested in this study with different thickness. Thickness of specimens tested are 1 mm, 1.1 mm, 1.5 mm and 2 mm and all specimens tested have a lengthwise (RD) rolling direction.   The quality of the sheared cut edge has a great impact to the formability and maximum fracture strain of the specimen. A specimen with a fine cut endures higher fracture strain than medium cut and a worn cut for all types of DP steel with different thickness. A 1 mm thick specimen endures a lower fracture strain than 1.5 mm and 2 mm specimen for all cut qualities.   Further, the impact of the orientation of the burr zone of a shear cut edge is studied. With the burr zone facing upwards from the CTEST punch the formability of the specimens is decreased compared to a burr zone facing downwards, especially for a worn cut specimen with micro cracks and imperfections in the edge surface.   ARAMIS Digital Image Correlation (DIC) system is used to analyze the specimen edges during press experiments. The ARAMIS results unveil that several small fractures appear in the sheared edges of a specimen just before the specimens split into two pieces. This phenomenon was seen for specimen with worn and medium shear cut qualities.   Finite Element (FE) simulations of the CTEST is performed in AutoForm to determine maximum values of the true strain for the three different cut qualities. The simulation in AutoForm does show a slightly higher value of the force and press depth than the value from the press test before maximum fracture strain in reached. The small fractures seen in ARAMIS just before the specimen split into two pieces cannot be seen in the simulation in AutoForm.
26

Resistance and Ultrasonic Spot Welding of Light-Weight Metals

Lu, Ying January 2018 (has links)
No description available.
27

Experimental Investigation on Inclusions in Medium Manganese Steels and High Manganese Steels

Alba, Michelia January 2021 (has links)
Advanced High Strength Steel (AHSS) has become a popular steel grade among automakers to produce vehicle bodies. With improvements in strength and elongation, AHSS has evolved to its 2nd generation, including high manganese steel. Even though it has outstanding strength, the 2nd generation of AHSS faces some production problems due to its high alloying elements. With continual improvement, the 3rd generation of AHSS is currently in production. In this generation, the steel types still have a competitive strength and elongation like the 2nd generation of AHSS while having lower alloying element contents and production costs. One of the types of 3rd generation AHSS is medium manganese steel. Research related to the 2nd and 3rd generation of AHSS mainly focuses on their mechanical properties and microstructures. As there is a strong correlation between mechanical properties and inclusion characteristics, further investigation of the evolution of inclusions is still required. In this study, high-temperature experiments were conducted to investigate the effects of metal chemistry on the inclusion evolution in liquid steel. The concentrations of manganese, aluminum, and nitrogen were varied systematically. Two and three-dimensional analysis techniques were applied to study the number, composition, and size distribution of inclusions. Electrolysis extraction was used to identify the oxide, sulfide, and nitride inclusions, whereas an automated SEM with an ASPEX feature was used to detect a larger number of inclusions for better representation of the steel matrix. This work has established inclusion classification rules to distinguish nitride inclusions from oxide inclusions. To the best of the authors’ knowledge, this is the first discussion of this type of inclusion classification in the open literature. Based on the automated SEM (ASPEX Feature) analysis, the type of detected inclusions in medium and high manganese steels were Al2O3(pure), Al2O3-MnS, AlN(pure), AlN-MnS, AlON, AlON-MnS, and MnS inclusions. As the manganese content in the steel increased from 2% to 20%, the total amount of inclusions, especially AlN-contained inclusions, was raised. This phenomenon occurred due to the increase in nitrogen solubility with increased manganese content in the steel. The thermodynamic calculation also predicted that AlN inclusions would form when the steel was cooled or during the solidification. Moreover, AlN and MnS inclusions were observed to co-precipitate together. Similar to manganese, the increase in the aluminum content (Al = 0.5-6%) increased the total amount of inclusions in the steel, and the dominant inclusion type is AlN. AlN and Al2O3 inclusions can be heterogenous nucleation sites for MnS inclusions. Furthermore, Al2O3 inclusions also became heterogeneous nucleation sites for AlN inclusions. The experimental set-up was further modified to investigate the effect of nitrogen on the formation of inclusions in the medium manganese steels. The nitrogen was introduced by purging or injecting N2 gas into the steel system. Similar to the effect of manganese and aluminum, the increase in the nitrogen content also increased the total amount of inclusions. Once the nitrogen content in the steel exceeded the critical limit for the formation of AlN inclusions, AlN inclusions can be stable in the liquid steel. Moreover, regardless of the nitrogen content in the steel, AlN-MnS inclusions were formed in the slow-cooled steels. In terms of morphology, AlN inclusions can be formed of plate-like, needle, angular, agglomerate, or irregular shapes. Furthermore, a brief investigation on the addition of calcium and nitrogen to the medium manganese steels found that calcium led to the formation of other complex inclusions, such as CAx and CAS-Other inclusions. In the medium manganese steel composition in the present study, the number of CAS-Other inclusions was dominated by (Ca,Mn)S-Oxide inclusions after the addition of Ca. However, with time and after introducing N2 gas into the steel, the number of (Ca,Mn)S-Nitride inclusions also increased. The formation of (Ca,Mn)S-Nitride inclusions resulted from the co-precipitation of CaS, MnS, and AlN. The current work provides a better understanding of the formation mechanism of inclusions in medium manganese steels and high manganese steels. It presents complete information on the characteristics of inclusions, such as the number density, type, and morphology of inclusions. This knowledge can help steelmakers improve the steelmaking process to control the formation of inclusions, which can be problematic for the manufacture and performance of medium manganese steels and high manganese steels. / Dissertation / Doctor of Philosophy (PhD)
28

A STUDY OF SELECTIVE SURFACE AND INTERNAL OXIDATION OF ADVANCED HIGH STRENGTH STEEL GRADES

Chen, Meng-Hsien 02 September 2014 (has links)
No description available.
29

Understanding Microstructure Evolution in Rapid Thermal Processing of AISI 8620 Steel

Lolla, Sri Venkata Tapasvi January 2009 (has links)
No description available.
30

Effect of Starting Microstructure and CGL Compatible Thermal Processing Cycle on the Mechanical Properties of a Medium Mn Third Generation Advanced High Strength Steel

Bhadhon, Kazi January 2017 (has links)
Medium Mn TRIP steels are amongst the most widely researched third generation advanced high strength steels (3G-AHSSs) as they are ideal candidates for automotive light-weighting applications owing to their superior strength and ductility balance. However, the thermal processing cycles of these steels need to be compatible with the industrial continuous galvanizing line (CGL) in order to successfully employ them in the automotive manufacturing industry. The main objective of the present research was to develop a CGL compatible thermal processing cycle for a prototype medium Mn steel that would produce significant volume fractions of chemically stable retained austenite and exhibit mechanical properties consistent with established 3G-AHSS targets. In that regard, the effects of intercritical annealing (IA) time and temperature and starting microstructure were determined in the first part of this research. The as-received tempered martensite (S-TM) and heat treated martensite (S-M) were the two different starting microstructures studied in this research. In this case, the overaging temperature (OT) treatment (460°C for 20s) was kept constant. It was found that high volume fractions (≥ 0.30) of retained austenite were achieved for S-M samples intercritically annealed at 675°C for shorter times (i.e. 60 to 120s) compared to S-TM samples. TEM analysis of the S-M samples showed that most of the retained austenite was present in a film type morphology, which is known to be more stable chemically and mechanically compared to the block type morphology. The tensile test results showed that although both the S-TM and S-M samples exhibited a high strength/ductility balance, the S-M samples, particularly the S-M 675°C + 120s samples, showed more potential in terms of CGL compatibility and achieving 3G-AHSS target mechanical properties. The effect of OT holding time was determined in the second part of this research. In that regard, the OT holding time was varied form 20s to 120s for selected S-TM and S-M samples. The S-TM 710°C samples with increased OT holding times (60s and 120s) had a significant increase in retained austenite volume fraction compared to the baseline 20s OT samples. However, the retained austenite volume fractions did not change for S-M samples regardless of OT holding time. It was also found that the mechanical properties of the annealed S-TM and S-M steels depended on the OT holding time. For the S-TM samples with > 120s IA holding times, longer OT holding times (60s and 120s) produced chemically unstable retained austenite which transformed rapidly at low strain resulting in low UTS × TE products. However, although longer OT holding times significantly increased the yield strength of the annealed S-M samples, the UTS × TE product decreased significantly owing to decreased retained austenite stability. Finally, based on the results of this research, it was concluded that the prototype medium Mn TRIP steel can achieve 3G-AHSS target mechanical properties using CGL-compatible thermal processing cycles. Moreover, depending on successful reactive wetting, it may be possible to perform both thermal processing and galvanizing of this steel in the industrial CGL. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0396 seconds