• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

KINETIC MODELLING OF HIGH MANGANESE STEEL IN LMF PROCESS

Kumar, Muralidharan January 2016 (has links)
Presence of inclusions in high manganese steel are a major concern in the steel making industry, since these particles affect the processing and properties of the steel. During the refining of high manganese steel in the ladle furnace, the types of inclusions present and their growth in the liquid steel, or during solidification of the steel, caused by the addition of manganese and other alloying elements are to be examined. This research developed a kinetic model for the presence and growth of inclusions in the liquid high manganese steel for the ladle metallurgy process. The diffusion of dissolved elements, and the seed of inclusions for the growth and consumption of inclusions, were both addressed in the model. The present model for inclusions was coupled to the updated kinetic model for slag-steel reactions in the ladle furnace for high manganese steel. The coupled model allows for verifying the process analysis plant data for the highest manganese concentration presently available in the steel industry. Finally, an analysis of the coupled kinetic model was performed to compare the effect of the different processing conditions, and the presence and growth of inclusions in the high manganese steel from the ladle metallurgy process. / Thesis / Master of Applied Science (MASc)
2

GRAIN GROWTH IN HIGH MANGANESE STEELS

BHATTACHARYYA, MADHUMANTI January 2018 (has links)
The automotive industry, has been innovating in the field of materials development in order to meet the demand for lower emissions, improved passenger safety and performance. Despite various attempts of introducing other lightweight materials (Al, Mg or polymers) in car manufacturing, steel has remained as the material of choice till date due to its excellent adaptability to systematic upgradation and optimization in its design and processing. One of the outcomes is the development of second generation high Mn TWin Induced Plasticity (TWIP) steels with excellent strength-ductility balance suitable for automotive applications. Cost effective high performance TWIP steel design is mostly based on its alloy design and advanced up and down stream processing methods (thermomechanical controlled processing (TMCP)) which can help achieve suitable microstructure to meet the property requirements. It has been observed that grain boundary migration (GBM) in austenite during high temperature TMCP stage dictates grain growth to control the final microstructure. This research work initially investigates the grain growth in Fe-30%Mn steel within a temperature regime of 1000-1200°C. Compared to conventional low Mn steel, austenite boundary mobility in Fe-30%Mn was found to be 1-2 orders of magnitude smaller. Atom probe tomography results showed no Mn segregation at austenite high angle grain boundaries (γ-HAGB) which rules out the effect of Mn solute drag on growth kinetics in Fe-30%Mn steels. Grain boundary character distribution (GBCD) study showed that the sample consists of two different population of grain boundaries. 50% of the grain boundaries are random HAGBs with high mobility. Remaining 50% are special in nature which introduce low mobility boundary/boundary segments in the global boundary network. The special boundaries are mostly in the form of Σ3 CSL boundaries or its variants like Σ9, Σ 27. These boundary/ boundary segments were introduced by the formation of annealing twins and their interactions with the random HAGBs. An attempt to investigate the effect of Mn on growth kinetics at 1200°C showed that Mn slows down growth kinetics up to 15 wt% predominantly by the formation of annealing twins. A qualitative study of the microstructures showed that as Mn concentration is increased from 1% to 15%, the annealing twin density increases resulting in Σ3 frequency to be 30%. The increased twinning frequency is attributed to the effect of Mn on lowering the stacking fault energy (SFE). Annealing twins, belonging to Σ3 CSL family, intersect the HAGBs resulting into twin induced boundary segments which possess very low mobility. In the light of this idea, slow grain growth in high Mn steel was attributed to the population of low mobility boundaries. The proposed ‘twin inhibited grain growth’ model clearly points to the low mobility boundary/boundary segments to be the rate controlling factor during grain growth in high Mn steels. The effect of carbon on grain growth in Fe-30%Mn steel showed that the presence of carbon makes the growth kinetics faster by a factor of 4 and 6 at 1200°C and 1100°C respectively. Although, atom probe tomography results indicated that in presence of carbon, Mn segregation takes place at γ-HAGBs in Fe-30%Mn steel, solute drag does not appear to play a role as it was seen that with increase in Mn content beyond 1%, the solute effect of Mn in slowing down HAGB migration becomes weak. Also, abovementioned higher mobility values are obtained from the growth kinetics of Fe-30Mn-0.5C. This once again highlights the fact that effect of Mn in slowing down grain growth is due to the low mobility of twin/twin related boundaries or boundary segments. Controlling grain growth has been commonly proposed to be accomplished through small addition (<0.1%) of microalloying elements (Nb, V and Ti) which can slow down GBM at high temperature by solute drag and at low temperature by precipitate pinning (Zener drag). This research work has also experimentally quantified the solute drag of Nb in a series of Fe- 30%Mn steels. Grain boundary mobility was estimated for various temperatures and niobium contents. An attempt was made to calculate the grain boundary mobility in presence of niobium using Cahn’s solute drag model. This calculated mobility, when used in the proposed ‘twin inhibited grain growth’ model, the predicted growth kinetics which showed very good fit with the experimentally obtained growth kinetics in case of Fe-30Mn-0.03Nb and Fe-30Mn-0.05Nb steels at 1100°C. The effect of Nb solute drag, thus captured using Cahn’s model, was shown to be slowing down only the HAGB migration in the microstructure, whilst the special boundary mobility was not affected by solute Nb. Another attempt was made through grain boundary engineering (GBE) to control grain growth in Fe-30Mn-0.5C steel. Using different TMCP schemes, GBCD was modified to produce maximum frequency of special boundary. Preliminary studies on grain growth of single step-grain boundary engineered samples did show a significant lowering of grain size compared to a no-GBE sample after grain growth. However, the effect of iterative GBE didn’t show any significant effect in controlling grain growth in spite of the fact that it increased Σ3 frequency to 64%. This probably indicates that the effect of GBE on grain growth by the formation of annealing twins/special low mobility boundaries is a complicated process which might involve twin/special boundary morphology, annihilation kinetics and formation of grain clusters in the microstructure other than the formation of immobile special triple junctions through the intersection of twins/special boundaries with the random HAGBs. / Thesis / Doctor of Philosophy (PhD)
3

Estudo comparativo da resistência à corrosão entre aços alto manganês e o aço 9% níquel em soluções aquosas de H2SO4 e NaCl / Comparative study of corrosion resistance between high manganese steels and 9% nickel steel in aqueous solutions of NaCl and H2SO4

Cerra Florez, Mauro Andrés 08 August 2017 (has links)
CERRA FLOREZ, M. A. Estudo comparativo da resistência à corrosão entre aços alto manganês e o aço 9% níquel em soluções aquosas de H2SO4 e NaCl. 2017. 108 f. Dissertação (Mestrado em Ciência de Materiais)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2017-09-13T13:08:35Z No. of bitstreams: 1 2017_dis_macerraflorez.pdf: 7059370 bytes, checksum: 037d39ae844a1b60cbe1183a10902438 (MD5) / Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2017-09-13T13:09:44Z (GMT) No. of bitstreams: 1 2017_dis_macerraflorez.pdf: 7059370 bytes, checksum: 037d39ae844a1b60cbe1183a10902438 (MD5) / Made available in DSpace on 2017-09-13T13:09:44Z (GMT). No. of bitstreams: 1 2017_dis_macerraflorez.pdf: 7059370 bytes, checksum: 037d39ae844a1b60cbe1183a10902438 (MD5) Previous issue date: 2017-08-08 / Liquefied natural gas volumes which at present have to be stored and/or transported require that the materials engineering constantly develop materials that adapt to the mechanical, chemical and economic needs of the industry. Aluminum alloys, 9% nickel steel alloys and austenitic stainless steels are currently used for cryogenic applications, however, all these materials have disadvantages, such as high cost of production, welding difficulties, corrosion resistance, among others. High manganese steels offer an attractive alternative because manganese and carbon replace nickel as austenite stabilizer; this change also represents a significant decrease in steel fabrication costs. The present study aims to establish a comparative degree of corrosion resistance in two aqueous solutions between four high manganese steels with a content of 28% Mn, 26% Mn, 22% Mn, 20% Mn in relation to the 9% Nickel that is widely used in petrochemical industry. Mass fraction diagrams were performed in Thermo-Calc® software. The steels were characterized using the techniques: Optical Microscopy, Scanning Electron Microscopy (SEM), Electron Backscatter Diffraction Analysis (EBSD), Energy Dispersive X-ray Spectroscopy (EDS), Optical Emission Spectroscopy, X-ray Fluorescence. The mechanical properties were evaluated by hardness and microhardness measurements. The corrosion resistance was evaluated in aqueous solutions of NaCl and H 2 SO 4 by Open Circuit Potential (OCP), Linear Polarization Curves and Electrochemical Impedance Spectroscopy. The results obtained in the thermodynamic study helped to predict the phases present in these steels as well as the heat treatment temperature. The microstructural study revealed the influence of the phases on the mechanical properties, showing that the 9% nickel steel presents higher hardness values than the high manganese steels. The corrosion tests showed that the high manganese steels have less corrosion resistance than 9% nickel steel, due to the formation of unstable and poorly compacted oxides that do not provide protection against corrosion; In contrast, the oxides formed by the 9% nickel steel gave it a better protection as observed in the curves that were found. / Os volumes de gás natural liquefeito que na atualidade precisam ser armazenados e/ou transportados requerem que a engenharia de materiais desenvolva constantemente materiais que se adaptem às necessidades mecânicas, químicas e econômicas da indústria. As ligas de alumínio, aço 9% níquel e aços inoxidáveis são utilizadas para aplicações criogênicas, mas todos estes materiais têm desvantagens, como altos custos de produção, dificuldades para a soldagem, entre outras. Os aços alto manganês oferecem uma alternativa – devido ao manganês e o carbono substituírem o níquel como estabilizador da austenita no aço, este câmbio também representa uma diminuição apreciável nos custos de fabricação do aço. O presente estudo visa estabelecer um grau comparativo da resistência à corrosão em duas soluções aquosas entre quatro aços alto manganês com conteúdo de 28%Mn, 26%Mn, 22%Mn, 20%Mn em relação ao aço 9% níquel que é amplamente utilizado na indústria petroquímica. Foram realizados diagramas de fração em massa no software Thermo-Calc ® ; os aços foram caracterizados utilizando as técnicas: Microscopia Óptica, MEV, EBSD, EDS, Espectroscopia de Emissão Ótica e Fluorescência de Raios X; as propriedades mecânicas foram avaliadas por medidas de dureza e microdureza. A resistência à corrosão foi avaliada em soluções aquosas de NaCl e de H 2 SO 4 utilizando as técnicas de monitoramento do Potencial de Circuito Aberto (OCP), as Curvas de Polarização Linear e a Espectroscopia de Impedância Eletroquímica. Os resultados obtidos no estudo termodinâmico ajudaram a prever as fases presentes nestes aços, assim como a temperatura de tratamento térmico. O estudo microestrutural revelou a influência das fases nas propriedades mecânicas, mostrando que o aço 9% níquel apresenta maiores valores de dureza que os aços alto manganês. E os ensaios de corrosão mostraram que os aços alto manganês apresentam menor resistência à corrosão do que o aço 9% níquel, devido à formação de óxidos instáveis e pouco compactos que não provêm proteção contra a corrosão; em contraste com os óxidos formados pelo aço 9% níquel, outorgaram-lhe uma melhor proteção como foi observado nas curvas encontradas.
4

ARGON-OXYGEN DECARBURIZATION OF HIGH MANGANESE STEELS

Rafiei, Aliyeh 18 February 2021 (has links)
Manganese is an essential alloying element in the 2nd and 3rd generation of Advanced High Strength steels (AHSS) containing 5 to 25% manganese. A combination of excellent strength and ductility makes these grades of steel attractive for the automotive industry. To produce these steels to meet metallurgical requirements the main concern for the steelmakers is to decrease the carbon concentration as low as 0.1% while suppressing the excessive manganese losses at high temperatures. Argon Oxygen Decarburization (AOD) is a promising candidate for the refining of high manganese steels. This work has studied the kinetics of decarburization and manganese losses during the argon oxygen bubbling into a wide range of iron-manganese-carbon alloys. It was shown that decreasing the initial carbon content increased the manganese loss. In the competition between manganese and carbon for oxygen, alloys with lower initial manganese concentrations consumed a higher portion of oxygen for decarburization. This behavior was not expected by thermodynamics and the results did not support the concept of the critical carbon content either. It was demonstrated that for lower range carbon (≤0.42%) alloys, the total manganese loss can be explained by considering multiple mechanisms in parallel; oxide formation (MnO) and vapor formation (Mn (g)), and formation of Manganese mist by evaporation-condensation (Mn (l)). The evaporation-condensation mechanism was proposed with the assumption that the heat generated from MnO and CO formation increases the temperature at the surface of the bubble which facilitates the evaporation of manganese at a high vapor pressure. Consequently, manganese vapor condenses as fine droplets at the lower temperature inside the bubble. Although dilution of oxygen with argon increased the efficiency of oxygen for decarburization as expected from the mechanism of the AOD process, manganese loss did not stop completely at higher argon concentrations in the gas mixture. Therefore, the bubble and melt do not fully equilibrate with respect to Mn and C. For high carbon alloys (1%), there was excess oxygen after accounting for CO and MnO formation. According to mass balance and thermodynamic calculations, and assuming manganese loss by evaporation was negligible it was shown that oxygen was distributed amongst MnO, FeO, CO, and CO2. It was demonstrated that increasing temperature resulted in the higher manganese loss as a mist and by simple evaporation due to the increased vapor pressure and less manganese loss by oxidation. Furthermore, it was found that the rate of decarburization increased with increasing temperature due to more partitioning of oxygen to carbon than manganese. In addition, it was found that the variations of depth of lance submergence did not affect the rate of decarburization or manganese loss. This means that the reactions occur within such a short time that prolonged time after the reaction is completed does not lead to a repartitioning of the species. / Thesis / Doctor of Philosophy (PhD)
5

Solidification Behavior and Hot Cracking Susceptibility of High Manganese Steel Weld Metals

Sutton, Benjamin James 26 July 2013 (has links)
No description available.
6

Experimental Investigation on Inclusions in Medium Manganese Steels and High Manganese Steels

Alba, Michelia January 2021 (has links)
Advanced High Strength Steel (AHSS) has become a popular steel grade among automakers to produce vehicle bodies. With improvements in strength and elongation, AHSS has evolved to its 2nd generation, including high manganese steel. Even though it has outstanding strength, the 2nd generation of AHSS faces some production problems due to its high alloying elements. With continual improvement, the 3rd generation of AHSS is currently in production. In this generation, the steel types still have a competitive strength and elongation like the 2nd generation of AHSS while having lower alloying element contents and production costs. One of the types of 3rd generation AHSS is medium manganese steel. Research related to the 2nd and 3rd generation of AHSS mainly focuses on their mechanical properties and microstructures. As there is a strong correlation between mechanical properties and inclusion characteristics, further investigation of the evolution of inclusions is still required. In this study, high-temperature experiments were conducted to investigate the effects of metal chemistry on the inclusion evolution in liquid steel. The concentrations of manganese, aluminum, and nitrogen were varied systematically. Two and three-dimensional analysis techniques were applied to study the number, composition, and size distribution of inclusions. Electrolysis extraction was used to identify the oxide, sulfide, and nitride inclusions, whereas an automated SEM with an ASPEX feature was used to detect a larger number of inclusions for better representation of the steel matrix. This work has established inclusion classification rules to distinguish nitride inclusions from oxide inclusions. To the best of the authors’ knowledge, this is the first discussion of this type of inclusion classification in the open literature. Based on the automated SEM (ASPEX Feature) analysis, the type of detected inclusions in medium and high manganese steels were Al2O3(pure), Al2O3-MnS, AlN(pure), AlN-MnS, AlON, AlON-MnS, and MnS inclusions. As the manganese content in the steel increased from 2% to 20%, the total amount of inclusions, especially AlN-contained inclusions, was raised. This phenomenon occurred due to the increase in nitrogen solubility with increased manganese content in the steel. The thermodynamic calculation also predicted that AlN inclusions would form when the steel was cooled or during the solidification. Moreover, AlN and MnS inclusions were observed to co-precipitate together. Similar to manganese, the increase in the aluminum content (Al = 0.5-6%) increased the total amount of inclusions in the steel, and the dominant inclusion type is AlN. AlN and Al2O3 inclusions can be heterogenous nucleation sites for MnS inclusions. Furthermore, Al2O3 inclusions also became heterogeneous nucleation sites for AlN inclusions. The experimental set-up was further modified to investigate the effect of nitrogen on the formation of inclusions in the medium manganese steels. The nitrogen was introduced by purging or injecting N2 gas into the steel system. Similar to the effect of manganese and aluminum, the increase in the nitrogen content also increased the total amount of inclusions. Once the nitrogen content in the steel exceeded the critical limit for the formation of AlN inclusions, AlN inclusions can be stable in the liquid steel. Moreover, regardless of the nitrogen content in the steel, AlN-MnS inclusions were formed in the slow-cooled steels. In terms of morphology, AlN inclusions can be formed of plate-like, needle, angular, agglomerate, or irregular shapes. Furthermore, a brief investigation on the addition of calcium and nitrogen to the medium manganese steels found that calcium led to the formation of other complex inclusions, such as CAx and CAS-Other inclusions. In the medium manganese steel composition in the present study, the number of CAS-Other inclusions was dominated by (Ca,Mn)S-Oxide inclusions after the addition of Ca. However, with time and after introducing N2 gas into the steel, the number of (Ca,Mn)S-Nitride inclusions also increased. The formation of (Ca,Mn)S-Nitride inclusions resulted from the co-precipitation of CaS, MnS, and AlN. The current work provides a better understanding of the formation mechanism of inclusions in medium manganese steels and high manganese steels. It presents complete information on the characteristics of inclusions, such as the number density, type, and morphology of inclusions. This knowledge can help steelmakers improve the steelmaking process to control the formation of inclusions, which can be problematic for the manufacture and performance of medium manganese steels and high manganese steels. / Dissertation / Doctor of Philosophy (PhD)
7

Mechanical behaviour of a new automotive high manganese TWIP steel in the presence of liquid zinc

Beal, Coline 25 March 2011 (has links) (PDF)
High manganese TWIP (TWinning Induced Plasticity) steels are particularly attractive for automotive applications because of their exceptional properties of strength combined with an excellent ductility. However, as austenitic steels, they appear to be sensitive to liquid zinc embrittlement during welding, the liquid zinc arising from the melted coating due to the high temperatures reached during the welding process. In this framework, the cracking behaviour of a high manganese austenitic steel has been investigated in relation to the liquid metal embrittlement (LME) phenomenon by hot tensile tests carried out on electro-galvanized specimens using a Gleeble 3500 thermomechanical simulator. The influence of different parameters such as temperature and strain rate on cracking behaviour has been studied. Embrittlement appears within a limited range of temperature depending on experimental conditions. Conditions for which cracking occurs could be experienced during welding processes. The existence of a critical stress above which cracking appears has been evidenced and this critical stress can be used as a cracking criterion. Finally, the study of the influence of different parameters such as time of contact between steel and liquid zinc before stress application, coating and steel on LME occurrence provides understanding elements of LME mechanism and permits to suggest solutions for preventing cracking during spot welding of such steels.
8

Mechanical behaviour of a new automotive high manganese TWIP steel in the presence of liquid zinc / Comportement mécanique d’un nouvel acier TWIP à haute teneur en manganèse pour l’automobile en présence de zinc liquide

Béal, Coline 25 March 2011 (has links)
Les aciers TWIP (TWinning Induced Plasticity) à haute teneur en manganèse sont particulièrement prometteurs pour les applications automobiles de par leur excellent compromis entre résistance mécanique et ductilité. Cependant, la microstructure austénitique leur confère une sensibilité à la fragilisation par le zinc liquide durant les procédés de soudage ; le zinc liquide provenant de la fusion du revêtement résultant de l’élévation de température à la surface de l’acier. Dans cette étude, la fissuration d’un acier austénitique à haute teneur en manganèse a été étudiée en rapport avec le phénomène de fragilisation par les métaux liquides par des essais de traction à chaud réalisés sur des éprouvettes électrozinguées au moyen d’un simulateur thermomécanique Gleeble 3500. L’influence de nombreux paramètres tels que la température et la vitesse de déformation sur la fissuration a été étudiée. La fragilisation apparaît dans un domaine de température limité qui dépend des conditions expérimentales. Les conditions pour lesquelles la fissuration apparaît peuvent être rencontrées durant les procédés de soudage. L’existence d’une contrainte critique pour laquelle la fissuration apparait a été mise en évidence et celle-ci peut être utilisée comme critère de fissuration. Enfin, l’étude de l’influence de différents paramètres tels que le temps de contact entre l’acier et le zinc liquide avant l’application des contraintes, le revêtement et l’acier sur l’apparition de la fragilisation apporte des éléments de compréhension du mécanisme de fissuration et permet de proposer des solutions pour éviter la fissuration durant le soudage par point de l’acier étudié. / High manganese TWIP (TWinning Induced Plasticity) steels are particularly attractive for automotive applications because of their exceptional properties of strength combined with an excellent ductility. However, as austenitic steels, they appear to be sensitive to liquid zinc embrittlement during welding, the liquid zinc arising from the melted coating due to the high temperatures reached during the welding process. In this framework, the cracking behaviour of a high manganese austenitic steel has been investigated in relation to the liquid metal embrittlement (LME) phenomenon by hot tensile tests carried out on electro-galvanized specimens using a Gleeble 3500 thermomechanical simulator. The influence of different parameters such as temperature and strain rate on cracking behaviour has been studied. Embrittlement appears within a limited range of temperature depending on experimental conditions. Conditions for which cracking occurs could be experienced during welding processes. The existence of a critical stress above which cracking appears has been evidenced and this critical stress can be used as a cracking criterion. Finally, the study of the influence of different parameters such as time of contact between steel and liquid zinc before stress application, coating and steel on LME occurrence provides understanding elements of LME mechanism and permits to suggest solutions for preventing cracking during spot welding of such steels.

Page generated in 0.1038 seconds