Spelling suggestions: "subject:"aimants organique"" "subject:"claimant organique""
1 |
Caractérisation et modélisation de l’aimant organique NIT-2PyGauthier, Nicolas 08 1900 (has links)
L'aimant organique NIT-2Py a été caractérisé expérimentalement et ses propriétés ont été simulées numériquement à partir de la théorie de la fonctionnelle de la densité. Le magnétisme dans ce matériau provient de la présence d'un électron non apparié sur chaque molécule qui a ainsi un moment magnétique non nul. Ceci a été confirmé par des simulations sur une molécule isolée. Les molécules de NIT-2Py cristallisent dans le groupe d'espace P21/c avec huit molécules par maille élémentaire pour former la structure cristalline Alpha étudiée dans ce document. Le moment effectif de la susceptibilité et l'entropie magnétique totale montre que ce matériau est un système de spins 1/2 avec un spin par molécule.
Les mesures de chaleur spécifique ont mis en évidence la présence de deux phases magnétiques ordonnées à basse température qui sont séparées par un plateau en aimantation. Une première phase est observée à des champs magnétiques inférieurs à 2.2 T et a une température de transition de 1.32 K en champ nul. Les mesures de susceptibilité magnétique et d'aimantation ont permis d'établir que cette phase ordonnée est antiferromagnétique. Ceci est confirmé par les simulations numériques.
La deuxième phase est induite par le champ magnétique avec une température de transition de 0.53 K à 6 T. L'information disponible sur cette phase est limitée et l'étude du système à l'extérieur des phases ordonnées en donne une meilleure compréhension. Un modèle de spins S=1/2 isolés et de dimères S=0 isolés reproduit bien les mesures d'aimantation et de chaleur spécifique au-dessus de 3 K. L'application d'un champ magnétique réduit l'écart d'énergie entre le singulet et le triplet du dimère jusqu'au croisement qui se produit à 6 T. La phase induite émerge précisément à ce croisement et on spécule l'existence d'un condensat de Bose-Einstein des états triplets. / The organic magnet built from NIT-2Py molecules has been characterized experimentally and its properties have been simulated using density functional theory. In this material, an unpaired electron carrying a magnetic moment on each molecule is responsible for the magnetism. This has been confirmed by numeric simulations on an isolated molecule. NIT-2Py molecules crystallize in space group P21/c with eight molecules per unit cell to form crystalline phase Alpha studied in this document. The effective moment obtained from magnetic susceptibility and the total magnetic entropy show that this material is a spin 1/2 system with one spin per molecule.
Specific heat measurements have highlighted the presence of two magnetically ordered phases at low temperature, which are separated by a plateau in magnetization. A first phase is observed at magnetic field lower than 2.2 T and has a transition temperature of 1.32 K in zero field. Magnetic susceptibility and magnetization measurements have established that this ordered phase is antiferromagnetic. This is confirmed by numeric simulations.
The second phase is induced by a magnetic field and has a transition temperature of 0.53 K at 6 T. Information concerning the field induced phase is limited and a study of the system above the transition temperatures helps to gain a better understanding. A model of isolated spins S=1/2 and isolated dimers S=0 reproduces nicely the specific heat and magnetization data above 3 K. The application of a magnetic field reduces the energy gap between the singlet and the triplet of the dimer and the crossover between these levels is observed at 6 T. The field induced phase emerges precisely at this crossover suggesting the occurrence of a Bose-Einstein condensation of triplets states.
|
2 |
Caractérisation et modélisation de l’aimant organique NIT-2PyGauthier, Nicolas 08 1900 (has links)
L'aimant organique NIT-2Py a été caractérisé expérimentalement et ses propriétés ont été simulées numériquement à partir de la théorie de la fonctionnelle de la densité. Le magnétisme dans ce matériau provient de la présence d'un électron non apparié sur chaque molécule qui a ainsi un moment magnétique non nul. Ceci a été confirmé par des simulations sur une molécule isolée. Les molécules de NIT-2Py cristallisent dans le groupe d'espace P21/c avec huit molécules par maille élémentaire pour former la structure cristalline Alpha étudiée dans ce document. Le moment effectif de la susceptibilité et l'entropie magnétique totale montre que ce matériau est un système de spins 1/2 avec un spin par molécule.
Les mesures de chaleur spécifique ont mis en évidence la présence de deux phases magnétiques ordonnées à basse température qui sont séparées par un plateau en aimantation. Une première phase est observée à des champs magnétiques inférieurs à 2.2 T et a une température de transition de 1.32 K en champ nul. Les mesures de susceptibilité magnétique et d'aimantation ont permis d'établir que cette phase ordonnée est antiferromagnétique. Ceci est confirmé par les simulations numériques.
La deuxième phase est induite par le champ magnétique avec une température de transition de 0.53 K à 6 T. L'information disponible sur cette phase est limitée et l'étude du système à l'extérieur des phases ordonnées en donne une meilleure compréhension. Un modèle de spins S=1/2 isolés et de dimères S=0 isolés reproduit bien les mesures d'aimantation et de chaleur spécifique au-dessus de 3 K. L'application d'un champ magnétique réduit l'écart d'énergie entre le singulet et le triplet du dimère jusqu'au croisement qui se produit à 6 T. La phase induite émerge précisément à ce croisement et on spécule l'existence d'un condensat de Bose-Einstein des états triplets. / The organic magnet built from NIT-2Py molecules has been characterized experimentally and its properties have been simulated using density functional theory. In this material, an unpaired electron carrying a magnetic moment on each molecule is responsible for the magnetism. This has been confirmed by numeric simulations on an isolated molecule. NIT-2Py molecules crystallize in space group P21/c with eight molecules per unit cell to form crystalline phase Alpha studied in this document. The effective moment obtained from magnetic susceptibility and the total magnetic entropy show that this material is a spin 1/2 system with one spin per molecule.
Specific heat measurements have highlighted the presence of two magnetically ordered phases at low temperature, which are separated by a plateau in magnetization. A first phase is observed at magnetic field lower than 2.2 T and has a transition temperature of 1.32 K in zero field. Magnetic susceptibility and magnetization measurements have established that this ordered phase is antiferromagnetic. This is confirmed by numeric simulations.
The second phase is induced by a magnetic field and has a transition temperature of 0.53 K at 6 T. Information concerning the field induced phase is limited and a study of the system above the transition temperatures helps to gain a better understanding. A model of isolated spins S=1/2 and isolated dimers S=0 reproduces nicely the specific heat and magnetization data above 3 K. The application of a magnetic field reduces the energy gap between the singlet and the triplet of the dimer and the crossover between these levels is observed at 6 T. The field induced phase emerges precisely at this crossover suggesting the occurrence of a Bose-Einstein condensation of triplets states.
|
3 |
Étude du champ magnétique interne de deux matériaux magnétiques et d'un supraconducteur sans symétrie d'inversionDesilets-Benoit, Alexandre 08 1900 (has links)
Cette thèse est divisée en trois parties. Une première section présente les résultats de l'étude de la formation de polarons magnétiques liés (BMP) dans le ferroaimant EuB6 par diffusion de neutrons à petits angles (SANS). La nature magnétique du système ferromagnétique est observée sous une température critique de 15K. La signature des BMP n'apparaît pas dans la diffusion de neutrons, mais ces mesures permettent de confirmer une limite inférieure de 100\AA à la longueur de cohérence des BMP (xi_{Lower}).
Dans un second temps, l'étude du LaRhSi3, un supraconducteur sans symétrie d'inversion, par muSR et ZF-muSR nous permet de sonder le comportement magnétique du système dans la phase supraconductrice. Aucun champ magnétique interne n'a été détecté en ZF-muSR sous la température critique (T_c = 2.2K). Cela indique que la phase supraconductrice ne porte pas de moment cinétique intrinsèque. L'analyse du spectre d'asymétrie sous l'application d'un champ magnétique externe nous apprend que le système est faiblement type II par l'apparition de la signature de domaines magnétiques typique d'un réseau de vortex entre H_{c1}(0) et H_{c2}(0), respectivement de 80+/- 5 et 169.0 +/- 0.5 G.
Finalement, la troisième section porte sur l'étude du champ magnétique interne dans l'antiferroaimant organique NIT-2Py. L'observation d'une dépendance en température des champs magnétiques internes aux sites d'implantation muonique par ZF-muSR confirme la présence d'une interaction à longue portée entre les moments cinétiques moléculaires. Ces valeurs de champs internes, comparées aux calculs basés sur la densité de spins obtenue par calculs de la théorie de la fonctionnelle de la densité, indiquent que la moitié des molécules se dimérisent et ne contribuent pas à l'ordre antiferromagnétique. La fraction des molécules contribuant à l'ordre antiferromagnétique sous la température critique (T_c = 1.33 +/- 0.01K) forme des chaines uniformément polarisées selon l'axe (1 0 -2). Ces chaines interagissent antiferromagnétiquement entre elles le long de l'axe (0 1 0) et ferromagnétiquement entre les plan [-1 0 2]. / This thesis is divided in three sections. The first section presents the results from a small angle neutron scattering (SANS) investigation of the formation of bound magnetic polarons in the ferromagnet EuB6. While the magnetic nature of the system was observed below 15K, we could not resolve the q dependent signature of the polarons, thus putting a lower limit of 100\AA to the coherence length of the phenomenon (xi_{Lower}).
Secondly, we investigated the non-centrosymmetric superconductor LaRhSi3 by muSR. The absence of an internal field below T_c = 2.2 K in ZF-muSR, indicates that the superconducting wave function does not carry an intrinsic magnetic moment. The asymmetry spectrum taken under external magnetic field shows the magnetic signature associated with vortices between H_{c1}(0) and H_{c2}(0), respectively 80 +/- 5 and 169.0 +/- 0.5 G, suggesting the system is weakly type-II.
Finally, the third section presents the zero field muSR study of internal magnetic fields in the organic antiferromagnet NIT-2Py. The temperature dependent oscillating signal in the ZF-muSR spectrum confirms the presence of a long-range magnetic interaction between the molecules. By comparing the measured internal magnetic fields to calculated values based on density fonctional theory calculations, we confirm that half the molecules dimerizes while the other half forms the antiferromagnetic order under the critical temperature (T_c = 1.33 +/- 0.01K). In this antiferromagnetic order, the moments on the magnetic molecules are uniformly aligned along the (1 0 -2) axis. They interact antiferromagnetically along the (0 1 0) axis and ferromagnetically between the [-1 0 2] planes.
|
Page generated in 0.0709 seconds