• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PHYSICS-GUIDED MACHINE LEARNING APPLICATIONS FOR AIR TRAFFIC CONTROL

Hong-Cheol Choi (18937627) 08 July 2024 (has links)
<p dir="ltr">The Air Traffic Management (ATM) system encompasses complex and safety-critical operations which are mainly managed by Air Traffic Controllers (ATCs) and pilots to ensure safety and efficiency. This air traffic operation becomes more complex and challenging as demands continue to increase. Indeed, the demand for air transport is expected to increase by an average of 4.3% annually over the next 20 years, and the projected number of flights is expected to reach around 90 million by 2040 [1]. This continuous growth of demands can lead to an excessive workload for both ATCs and pilots, thereby resulting in the degradation of the ATM system. To effectively respond to this problem, a lot of effort has been put into developing decision support tools. This dissertation explores and focuses on the development of algorithms for decision support tools in air traffic control, emphasizing specific desirable properties essential for tasks such as tracking the position of aircraft and monitoring air traffic. The primary focus of this dissertation is to combine a data-driven model and a physics-based model systematically, thereby addressing the limitations of previous works in trajectory prediction and anomaly detection. Through a literature review, important properties, including real-time applicability, interpretability, and feasibility, are identified and pursued for practical applications. These properties are integrated into the proposed algorithms which combine data-driven and physics-based models to address dynamic air traffic scenarios effectively. To meet the requirement of real-time applicability, the algorithms are designed to be computationally efficient and adaptable to continuously changing conditions, ensuring timely provision of immediate information and near-instantaneous responses to assist ATCs. Subsequently, interpretability allows controllers to understand the reasoning behind the algorithm’s predictions. This is facilitated by the use of attention mechanisms and explicit physics-based guidance, making the predictions more intuitive and understandable. In addition, anomaly detection algorithms provide human-readable decision boundaries for flight states for a clear understanding. Lastly, feasibility ensures that the algorithms generate realistic aircraft trajectory predictions based on current flight states and air traffic conditions. This is achieved by physics-guided machine learning which leverages both data-driven and physics-based approaches, accounting for the aircraft dynamics and uncertainties. Moreover, practical and operational considerations are integrated into algorithms for real-world applications. This includes developing anomaly detection models that are adaptable to dynamic trajectory patterns to address the complexities of flexible area navigation airspace. Additionally, to reduce the workload of ATCs, providing immediate advisories for anomaly resolution and arrival sequencing is targeted by learning from historical data. By considering these properties with practical considerations, the dissertation presents a suite of algorithms that can effectively support human operators for air traffic control. </p>
2

Utilizing Data-Driven Approaches to Evaluate and Develop Air Traffic Controller Action Prediction Models

Jeongjoon Boo (9106310) 27 July 2020 (has links)
Air traffic controllers (ATCos) monitor flight operations and resolve predicted aircraft conflicts to ensure safe flights, making them one of the essential human operators in air traffic control systems. Researchers have been studying ATCos with human subjective approaches to understand their tasks and air traffic managing processes. As a result, models were developed to predict ATCo actions. However, there is a gap between our knowledge and the real-world. The developed models have never been validated against the real-world, which creates uncertainties in our understanding of how ATCos detect and resolve predicted aircraft conflicts. Moreover, we do not know how information from air traffic control systems affects their actions. This Ph.D. dissertation work introduces methods to evaluate existing ATCo action prediction models. It develops a prediction model based on flight contextual information (information describing flight operations) to explain the relationship between ATCo actions and information. Unlike conventional approaches, this work takes data-driven approaches that collect large-scale flight tracking data. From the collected real-world data, ATCo actions and corresponding predicted aircraft conflicts were identified by developed algorithms. Comparison methods were developed to measure both qualitative and quantitative differences between solutions from the existing prediction models and ATCo actions on the same aircraft conflicts. The collected data is further utilized to develop an ATCo action prediction model. A hierarchical structure found from analyzing the collected ATCo actions was applied to build a structure for the model. The flight contextual information generated from the collected data was used to predict the actions. Results from this work found that the collected ATCo actions do not show any preferences on the methods to resolve aircraft conflicts. Results found that the evaluated existing prediction model does not reflect the real-world. Also, a large portion of the real conflicts was to be solved by the model both physically and operationally. Lastly, the developed prediction model showed a clear relationship between ATCo actions and applied flight contextual information. These results suggest the following takeaways. First, human actions can be identified from closed-loop data. It could be an alternative approach to collect human subjective data. Second, the importance of evaluating models before implications. Third, potentials to utilize the flight contextual information to conduct high-end prediction models.

Page generated in 0.0531 seconds