31 |
Vliv moderních prvků pasivní bezpečnosti na ochranu posádky vozidla / The Influence of Modern Passive Safety Features in the Protection of a Vehicle's OccupantsVostrejž, Jan January 2012 (has links)
Thesis in the field of passive safety problems, traffic accidents and health outcomes of participants in road traffic accidents is aimed, inter alia, to create an overview of modern passive safety elements especially cars. The work deals with elements of the passive safety system and the impact on the crew vehicle. It describes the principle of operation, especially airbags, safety belts, belt pretensioner and it includes solution of limiters tensioning force in the safety belt and other elements that have the task of reducing the consequences of a traffic accident. The use of modern elements of passive safety provides increased protection for the crew and eliminates the formation injuries crew. The technical issue is therefore closely related to the healthcare industry and in particular the Court of medicine in the field of personal injury in relation to the types and characters of incidents, or by applying of the safety elements. There are also shown the actual road accidents in which were killed or injured members of crew with an analysis of the mechanism of injury with the use or non-use of safety elements.
|
32 |
Visualization of Crash Channel Assignments in a Tabular FormParthanarayanasingh, Krishna Pooja 02 November 2023 (has links)
Passive safety systems try to lessen the effects of an accident. Airbags are a passive safety feature. They are designed to protect occupants of a vehicle during a crash. These systems have to be configured correctly in order to deploy airbags at the right time in case of a collision. Airbag application tools are used to simulate and interpret crashes. Some factors influence when an airbag should deploy. Based on different parameters, the logic for firing airbags is also different. Under every circumstance, an airbag has to be deployed at the right time in order to prevent injuries and fatalities. During the process of simulation, the data which is simulated is written to a database. During interpretation, this data is extracted from the database. Then, the required information can be analyzed and interpreted for further use.
This data contains crash related information. For example, the type of crash, crash code and crash channel assignments. For every crash present in the airbag project, crash channels are assigned to the sensors. Each sensor present has a crash channel assigned to it. This is called the crash channel assignment. An airbag application tool is developed to show the crash channel assignments. This tool should handle the information extraction, and visualization of crash channel assignments. The final output should be in a tabular format, which includes user specific customizations.
|
33 |
Biomechanical Responses of Human Surrogates under Various Frontal Loading Conditions with an Emphasis on Thoracic Response and Injury ToleranceAlbert, Devon Lee 04 June 2018 (has links)
Frontal motor vehicle collisions (MVCs) resulted in 10,813 fatalities and 937,000 injuries in 2014, which is more than any other type of MVC. In order to mitigate the injuries and fatalities resulting from MVCs, new safety restraint technologies and more biofidelic anthropomorphic test devices (ATDs) have been developed. However, the biofidelity of these new ATDs must be evaluated, and the mechanisms of injury must be understood in order to accurately predict injury. Evaluating the biomechanical response, injury mechanisms, and injury threshold of the thorax are particularly important because the thorax is one of the most frequently injured body regions in MVCs. Furthermore, sustaining a severe thoracic injury in an MVC significantly increases mortality risk.
The overall objective of this dissertation was to evaluate the biomechanical responses of human surrogates under various frontal loading conditions. This objective was divided into three sub-objectives: 1) to evaluate the biofidelity of the current frontal impact ATDs, 2) to evaluate the effect of different safety restraints on occupant responses, and 3) to evaluate rib material properties with respect to sex, age, structural response, and loading history.
In order to meet sub-objectives 1 and 2, full-scale frontal sled tests were performed on three different human surrogates: the 50th percentile male Hybrid III (HIII) ATD, the 50th percentile male Test Device for Human Occupant Restraint (THOR-M) ATD, and approximately 50th percentile male post-mortem human surrogates (PMHS). All surrogates were tested under three safety restraint conditions: knee bolster (KB), KB and steering wheel airbag (KB/SWAB), and knee bolster airbag and SWAB (KBAB/SWAB). The kinematic, lower extremity, abdominal, thoracic, and neck responses were then compared between surrogates and restraint conditions. In order to assess biofidelity, the ATD responses were compared to the PMHS responses. For both the kinematic and thoracic responses, the HIII and THOR-M had comparable biofideltiy. However, the HIII responses were slightly more biofidelic. The ATDs experienced similar lower extremity kinetics, but very different kinetics at the upper and lower neck due to differences in design. Evaluation of the different restraint conditions showed that the SWAB and KBAB both affected injury risk. The SWAB decreased head injury risk for all surrogates, and increased or decreased thoracic injury risk, depending on the surrogate. The KBAB decreased the risk of femur injury, but increased or decreased tibia injury risk depending on the surrogate and injury metric used to predict risk.
In order to meet sub-objective 3, the tensile material properties of human rib cortical bone and the structural properties of whole ribs were quantified at strain rates similar to those observed in frontal impacts. The rib cortical bone underwent coupon tension testing, while the whole ribs underwent bending tests intended to simulate loading from a frontal impact. The rib material properties accounted for less than 50% of the variation observed in the whole rib structural properties, indicating that other factors, such as rib geometry, were also influencing the structural response of whole ribs. Age was significantly negatively correlated with the modulus, yield stress, failure strain, failure stress, plastic strain energy density, and total strain energy density. However, sex did not significantly influence any of the material properties. Cortical bone material properties were quantified from the ribs that underwent the whole rib bending tests and subject-matched, untested (control) ribs in order to evaluate the effect of loading history on material properties. Yield stress and yield strain were the only material properties that were significantly different between the previously tested and control ribs.
The results of this dissertation can guide ATD and safety restrain design. Additionally, this dissertation provides human surrogate response data and rib material property data for the validation of finite element models, which can then be used to evaluate injury mitigation strategies for MVCs. / PHD / Frontal motor vehicle collisions (MVCs) resulted in 10,813 fatalities and 937,000 injuries in 2014, which is more than any other type of MVC. In order to mitigate the injuries and fatalities resulting from MVCs, new safety restraint technologies, e.g., seat belts, and more biofidelic (human-like) anthropomorphic test devices (ATDs), i.e., crash test dummies, have been developed. However, the biofidelity of these new ATDs must be evaluated, and the mechanisms of injury must be understood in order to accurately predict injury. Evaluating the biomechanical response, injury mechanisms, and injury threshold of the thorax (chest) are particularly important because the thorax is one of the most frequently injured body regions in MVCs. Furthermore, sustaining a severe thoracic injury in an MVC significantly increases the risk of death.
The overall objective of this dissertation was to evaluate the biomechanical responses of human surrogates under various frontal loading conditions. This objective was divided into three sub-objectives: 1) to evaluate the biofidelity of the current frontal impact ATDs, 2) to evaluate the effect of different safety restraints on occupant responses, and 3) to evaluate rib material properties with respect to sex, age, structural response, and loading history.
In order to meet sub-objectives 1 and 2, frontal crash tests were simulated in the laboratory using a crash sled. These sled tests were performed on three different human surrogates: the Hybrid III (HIII) ATD, the Test Device for Human Occupant Restraint (THOR-M) ATD, and post-mortem human surrogates (PMHS), i.e., cadavers. All surrogates were tested under three safety restraint conditions: knee bolster (KB), KB and steering wheel airbag (KB/SWAB), and knee bolster airbag and SWAB (KBAB/SWAB). The kinematic (body movements), lower extremity, abdominal, thoracic, and neck responses were then compared between surrogates and restraint conditions. In order to assess biofidelity, the ATD responses were compared to the PMHS responses. For both the kinematic and thoracic responses, the HIII and THOR-M had comparable biofideltiy. However, the HIII responses were slightly more biofidelic. The ATDs experienced similar lower extremity kinetics (forces and moments), but very different kinetics at the upper and lower neck due to differences in design. Evaluation of the different restraint conditions showed that the SWAB and KBAB both affected injury risk. The SWAB decreased head injury risk for all surrogates, and increased or decreased thoracic injury risk, depending on the surrogate. The KBAB decreased the risk of femur injury, but increased or decreased tibia injury risk depending on the surrogate and how injury risk was predicted.
In order to meet sub-objective 3, the material properties of human rib cortical bone and the structural response of whole ribs were quantified under experimental conditions reminiscent of what the bone would experience during a frontal impact. The rib cortical bone underwent material testing, while the whole ribs underwent bending tests intended to simulate a frontal impact. The rib material properties only partially influenced the structural response of the whole rib. This indicated that other factors, such as rib shape and thickness, were also influencing the structural response. Age was correlated to a decrease in several material properties. However, there was no significant difference between male and female material properties. Some differences in material properties were observed in cortical bone from fractured and intact ribs, indicating that the fracture influenced the rib material properties.
results of this dissertation can guide ATD and safety restrain design. Additionally, this dissertation provides human surrogate response data and rib material property data for finite element (computer) models, which can then be used to evaluate injury prevention strategies for MVCs.
|
34 |
Behavioral Analysis of Volvo Cars Instrument Panel During Airbag DeploymentNazari, Amir, Nourozi, Behrouz January 2016 (has links)
Airbags are a passive safety technology, required to function with zero failure rate. Advances in Computer Aided Engineering have allowed vehicle manufacturers to predict material and system behavior in the event of a crash. The sudden and rapid nature of a vehicle frontal crash, together with strict requirements put on safety make this a sensitive task. This thesis focuses on the front passenger airbag deployment and the instrument panel’s response. Various airbag modelling techniques are studied and presented in this document. This work is part of a larger-scale attempt to model a generic-sled that is physically representative of a real vehicle. Various component tests are to be performed in the sled environment, as opposed to a real vehicle, to save costs. Various modules are added to the sled once their behavior is verified by testing and in simulations. Software are advanced enough to identify location and magnitude of stress concentrations that develop during crash. LS-DYNA is used for explicit finite element simulations of the instrument panel (IP) in question with different airbag models. Verification has been achieved by design of experiment (DOE); with tests conducted to capture both the movements of the airbag housing and IP movements in response. These movements are broken down in various phases, facilitating implementation in the sled environment. Simplifications are made both to the computer models as well as the physical testing environment. The effects of these simplifications are quantified and discussed. Theoretical background is provided where fit while assumptions are justified wherever made. DYNAmore recommendations regarding costeffective calculations as well as result verification are followed. The obtained results show that the FE models replicate the real event with acceptable precision. The findings in this work can, by minor tweaks, be implemented on other IP models in the Volvo Cars range, leading to cost-saving solutions. This thesis provides the necessary information for sled implementations as well as future improvement suggestions. / Krockkudde är en s.k. passiv säkerhetsteknik som krävs att fungera felfritt. Framsteg inom Computer Aided Engineering har tillåtit biltillverkare att förutsäga material och systembeteende i samband med krock. Den plötsliga karaktären av krock, tillsammans med höga säkerhetskrav, gör detta till en känslig uppgift. Denna avhandling fokuserar på passagerarsidans krockkudde och instrumentbrädans (IP) respons under uppblåsning. Olika metoder för modellering av krockkuddar har studerats och presenteras i detta dokument. Arbetet är en del av en större skala försök att modellera en generisk-släde som är fysiskt representativ av en riktig bil; där olika komponent-tester skall utföras för att minska kostnader. När olika modulers beteende verifieras läggs de till släden. Denna verifiering sker genom finita element (FE) simuleringar så väl som fysiska tester. FE mjukvara är idag tillräckligt avancerad för att identifiera samt visualisera spänningskoncentrationer som uppstår i en konstruktion vid krock. LS-DYNA används i detta arbete för explicita FE simuleringar av en Volvo XC90 IP, lastad med olika krockkudde-modeller. Modell verifiering har uppnåtts genom försöksplanering (DOE); med tester utförda för att fånga rörelser av IP så väl som krockkudde-behållaren. Dessa rörelser är sedan uppdelade i olika faser för enklare genomförande i släde miljön. Förenklingar och antaganden görs både till FE modeller och fysiska testmiljön. Effekter av dessa har kvantifierats och relevant teoretisk bakgrund har inkluderats. Dokumentet innehåller även diskussion kring val av mätutrustning samt förbättringsförslag för fortsatt arbete. DYNAmore rekommendationer gällande kostnadseffektiva beräkningar och verifiering av simulerings-resultat har följts. Under arbetet visade sig att FE modellerna kan återskapa händelsen med hög noggrannhet; dessa trotts svårigheter i modellering av plast material. Möjligtvis kan man, genom mindre modifieringar, relatera slutsatserna i detta arbete till olika IP modeller i företagets produktkatalog vilket förmodligen leder till ytterligare kostnadsbesparingar. Denna avhandling ger den information som behövs för genomföranden i den generiska miljön.
|
35 |
Volume Estimation of Airbags: A Visual Hull ApproachAnliot, Manne January 2005 (has links)
<p>This thesis presents a complete and fully automatic method for estimating the volume of an airbag, through all stages of its inflation, with multiple synchronized high-speed cameras.</p><p>Using recorded contours of the inflating airbag, its visual hull is reconstructed with a novel method: The intersections of all back-projected contours are first identified with an accelerated epipolar algorithm. These intersections, together with additional points sampled from concave surface regions of the visual hull, are then Delaunay triangulated to a connected set of tetrahedra. Finally, the visual hull is extracted by carving away the tetrahedra that are classified as inconsistent with the contours, according to a voting procedure.</p><p>The volume of an airbag's visual hull is always larger than the airbag's real volume. By projecting a known synthetic model of the airbag into the cameras, this volume offset is computed, and an accurate estimate of the real airbag volume is extracted. </p><p>Even though volume estimates can be computed for all camera setups, the cameras should be specially posed to achieve optimal results. Such poses are uniquely found for different airbag models with a separate, fully automatic, simulated annealing algorithm.</p><p>Satisfying results are presented for both synthetic and real-world data.</p>
|
36 |
Volume Estimation of Airbags: A Visual Hull ApproachAnliot, Manne January 2005 (has links)
This thesis presents a complete and fully automatic method for estimating the volume of an airbag, through all stages of its inflation, with multiple synchronized high-speed cameras. Using recorded contours of the inflating airbag, its visual hull is reconstructed with a novel method: The intersections of all back-projected contours are first identified with an accelerated epipolar algorithm. These intersections, together with additional points sampled from concave surface regions of the visual hull, are then Delaunay triangulated to a connected set of tetrahedra. Finally, the visual hull is extracted by carving away the tetrahedra that are classified as inconsistent with the contours, according to a voting procedure. The volume of an airbag's visual hull is always larger than the airbag's real volume. By projecting a known synthetic model of the airbag into the cameras, this volume offset is computed, and an accurate estimate of the real airbag volume is extracted. Even though volume estimates can be computed for all camera setups, the cameras should be specially posed to achieve optimal results. Such poses are uniquely found for different airbag models with a separate, fully automatic, simulated annealing algorithm. Satisfying results are presented for both synthetic and real-world data.
|
37 |
The Effect of Seatbelt Pretensioner and Side Airbag Combined Loading on Thoracic Injury in Small, Elderly Females in Side Impact Automotive CollisionsLinton, Evan Robert January 2021 (has links)
No description available.
|
Page generated in 0.0205 seconds