• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the Thoracic Biomechanical Responses of Rear Seated 50th Percentile Male Anthropomorphic Test Devices and Post Mortem Human Surrogates During Frontal Motor Vehicle Collisions

Bianco, Samuel Thomas 14 July 2023 (has links)
Frontal motor vehicle collisions (MVCs) account for the majority of injuries and fatalities in MVCs according to the Fatality Analysis Reporting Systems (FARS). One of the most commonly injured regions of the body during MVCs is the thorax. While there are fewer adult passengers riding in the rear seat compared to the front seat, the number of adults in the rear seat may increase dramatically in the near future with the rise of ridesharing services and highly automated vehicles (HAVs). With the increase in exposure for adults riding in the rear seat, the safety of these passengers needs to be evaluated. Previous research has shown that occupant protection in the rear seat is disproportionately lower than that of the front seat in modern vehicles due to the focus on front seat occupants in both regulatory and market-driven crash tests. This has resulted in many of the occupant safety systems, e.g., pretensioners (PT), load limiters (LL), and airbags, being widely available in the front seat, but sparsely available in the rear seat. Anthropomorphic test devices (ATDs) have been developed to investigate occupant safety during frontal MVCs and can be utilized in the investigation of rear seat occupant injuries. However, the biofidelity and injury risk criteria used for these ATDs has only been validated when seated in the front seat. To validate the response and injury risk predictions of existing frontal ATDs in the rear seat it is necessary to generate new biomechanical data in the rear seat of modern vehicles. The purpose of this work is to quantify the biomechanical responses of two frontal ATDs, i.e., the Hybrid III and THOR-50M 50th percentile male ATDs, and 50th percentile male post mortem human surrogates (PMHS) seated in the rear seat of modern vehicles, which have various seat geometries and restraint types, during frontal MVCs. Emphasis is placed on comparisons between the thoracic responses of the three human surrogates e.g., thoracic deflection time histories, and thoracic injury risks, i.e., ATD injury risk prediction versus instances of PMHS injuries. A series of twenty-four frontal sled tests were first conducted with the HIII and THOR-50M ATDs seated in the rear seats of seven vehicle test bucks with varying seat geometries and two different restraint types. Three vehicles had advanced restraints while four had conventional restraints. Three different crash pulses were used derived from vehicle specific US New Car Assessment Program frontal crash data: Scaled (32kph), Generic (32kph), and NCAP85 (56kph). Thoracic injury metrics were not exceeded in the lower severity pulses for either ATD but were exceeded during some of the high severity tests. A matched comparison analysis between a front and rear seated Hybrid III 50th percentile male ATD is presented second that highlights the disparities between front and rear seat iii occupant safety of modern vehicles during frontal MVCs. The Hybrid III ATD data were used for this comparison. Thoracic injury risk was found to be higher for the rear seated HIII across all vehicles, while thoracic acceleration was lower in the rear than the front for some vehicles. PMHS thoracic responses and injury risk equations were then evaluated in four of the vehicles used for the ATD tests using the high severity sled pulse, i.e., NCAP85 (56kph). Thoracic acceleration and normalized deflection values were higher in vehicles with conventional restraints, and the location of maximum deflection was always inboard of the sternum. The resulting thoracic injuries ranged from AIS 3 to AIS 5. Additionally, there were a larger average number of rib fractures in vehicles with conventional restraints versus advanced restraints. A multi-point deflection injury risk equation predicted injury the best. However the less censored rib fracture data that were obtained suggest that all three of the injury equations evaluated could be improved. Lastly, the PMHS data were used to assess the similarities in thoracic response between the ATDs and PMHS. An objective rating metric was used for the response comparison. The HIII had a slightly better average score than the THOR-50M; however, the THOR-50M had a more biofidelic kinematic response during the tests. This analysis furthers the understanding of the effect of different occupant protection systems on thoracic injury risk in a rear seat environment and the biofidelity of frontal 50th percentile male ATDs in the rear seat. / Doctor of Philosophy / Frontal motor vehicle collisions (MVCs) account for the majority of injuries and fatalities in MVCs according to the Fatality Analysis Reporting Systems (FARS), a nationwide census of fatal injuries suffered during crashes. One of the most commonly injured regions of the body during MVCs is the thorax i.e. the chest. While there are fewer adult passengers riding in the rear seat compared to the front seat, the number of adults in the rear seat may increase dramatically in the near future with the rise of ridesharing services and in the future, the rise of highly automated vehicles (HAVs commonly called "driverless cars"). The safety of adult rear seat passengers needs to be evaluated due to the potential increase in occupancy rates. Previous research has shown that occupant protection in the rear seat is disproportionately lower than that of the front seat in modern vehicles. This is likely due to the focus on front seat occupants in both regulatory tests and market-driven crash tests such as the New Car Assessment Program and IIHS frontal overlap tests. This has resulted in many of the advanced occupant protection systems being widely available in the front seat, but sparsely available in the rear seat. Anthropomorphic test devices (ATDs), i.e., crash test dummies, have been developed to investigate occupant safety during frontal MVCs and can be utilized in the investigation of rear seat occupant injuries. However, the biofidelity (similarity of ATD response to a human surrogate) and injury risk criteria used for these ATDs has only been validated when seated in the front seat. To validate the thoracic response and injury risk predictions of the existing frontal ATDs when seated in the rear seat it is necessary to generate new biomechanical data in the rear seat of modern vehicles. The purpose of this work is to quantify the thoracic response of two current 50th percentile male frontal impact ATDs, i.e., the Hybrid III and THOR-50M, and similarly sized male post mortem human surrogates (PMHS) seated in the rear seat during a frontal MVC. Several vehicles were used and chosen to represent various seat geometries and restraint types. There are two restraint types in the rear seat within this body of work, conventional and advanced. A conventional restraint consists of a three point seat belt, while an advanced restraint consists of a three point seat belt with additional safety features installed. Emphasis is placed on the injury risk prediction from the ATD versus actual instances of injuries from the PMHS. A series of frontal sled tests were first performed with the Hybrid III and THOR-50M ATDs. Three different crash pulses derived from vehicle specific US New Car Assessment Program frontal crash data were used: Scaled (32kph), Generic (32kph), and NCAP85 (56kph). v These tests showed that the established injury metrics for the two ATDs were exceeded in some of the high severity tests. A matched comparison analysis between a front and rear seated Hybrid III 50th percentile male ATD is presented and highlights the disparities between front and rear seat occupant safety of modern vehicles during frontal MVCs. The thoracic injury risk was found to be higher in the rear compared to the front for all vehicles. A series of frontal sled tests were then performed with the mid-sized male PMHS using the high severity sled pulse (NCAP85) and four of the vehicles from the ATD tests. The thoracic deflections for the PMHS were normalized by the surrogate chest depth in order to compare them between different sized surrogates, and were found to be higher in vehicles with conventional restraints. All PMHS had severity thoracic injuries. Additionally, there were a larger average number of rib fractures in vehicles with conventional restraints versus advanced restraints. Finally, the thoracic response of each ATD was compared to the PMHS to further the understanding of the effect of different occupant protection systems on thoracic injury risk in a rear seat environment and investigate rear seat biofidelity of each ATD. The THOR-50M had a more biofidelic kinematic response, while the Hybrid III matched the PMHS thoracic deflections and accelerations more accurately when compared with an objective rating metric. The comparison between surrogate responses furthers the understanding of 50th percentile male ATD biofidelity, the ATD injury risk prediction capabilities, and effects of different occupant protection systems on thoracic injuries in the rear seat.
2

Comparison of Q3s Anthropomorphic Test Device Biomechanical Responses to Pediatric Volunteers

Ita, Meagan Eleanor 02 September 2014 (has links)
No description available.
3

Improvements and Validation of THUMS Upper Extremity : Refinements of the Elbow Joint for Improved Biofidelity / Utveckling och validering av THUMS övre extremitet : Förfining av armbågen för bättre biofidelitet

Sverrisdóttir, Kristín January 2019 (has links)
Introduction One out of five reported motor vehicle collision injuries occur to the upper extremities. Certain parts of The Total HUman Model for Safety (THUMS) lack validation against experimental data, including the elbow. The aim of this project is to refine and validate the elbow joint of THUMS, with focus on anatomical response of the elbow during axial impact applied to the wrist. Methods Internal contacts in the elbow were modified and new contacts assigned between bones and ligaments of the elbow. The posterior part of the radial- and ulnar collateral ligaments, and joint capsule was implemented to the model. Elasticmodulus of the cortical bones of the elbow was increased as well as the shell thickness of the humeral cortical bone. The updated model was validated against an experiment where an axial load was applied to the wrist of a female cadaver. The experimental resultant force in the wrist was then compared with the wrist force obtained from the simulations. Results The correlation between the experimental and simulation resultant wrist force for the updated model resulted in a CORA score of 0.882. This gave a 6.7% higher CORA score compared with the original model. Hourglass energy was reduced from 63.52% of internal energy to 0.78%. Energy ratio and contact energies indicated that the simulation was stable. Discussion Movement of elbow bones was assessed to be more anatomically correct, by accounting for the posterior ligament and elbow capsule support. The contact peak force in the humerus was lower and occurred earlier in the simulation in the updated model compared to the original. This is believed to be due to the reduced gap between the elbow bones after increasing the shell thickness of the humeral cortical bone. The model setup resembled the experiment in a good manner. Conclusion The upper extremity of THUMS was refined for improved biofidelity, with focus on the anatomical response of the elbow joint under an axial impact. However, further model improvements are suggested as well as extended validated against other experimental impact results. / Introduktion En av fem rapporterade krockskador med motorfordon förekommer i de övre extremiteterna. Vissa strukturer hos Total HUman Model for Safety (THUMS) saknar validering gentemot experimentell data, där armbågen är ett av dem. Syftet med detta projekt är att förfina och validera armbågsleden hos THUMS, med fokus på dess anatomiska respons under axiellt islag applicerad på handleden. Metod Interna kontakter i armbågen modifierades och nya kontakter tilldelades mellan ben och ligament. De posteriora delarna av kollateral ligament hos radius och ulna implementerades i modellen, så även armbågens ledkapseln. Elasticitetsmodulen hos de kortikala benen i armbågen höjdes och skalets tjocklek idet humerala kortikala benet utökades. Den uppdaterade modellen validerades mot ett experiment där en axiell belastning hade applicerats mot en kvinnlig kadavers handled. Den resulterande kraften i handleden från experimentet jämfördes sedan med erhållen kraft i handleden från simuleringarna. Resultat Korrelationen mellan den experimentella kraften och simulerade kraften hos den uppdaterade modellen resulterade i ett CORA-poäng på 0,882. Detta är en ökning med 6,7% jämfört med den ursprungliga modellen. Hourglassenergin reducerades från 63,52% av inre energi till 0,78%. Energiförhållandet och kontaktenergier indikerade stabil simulering. Diskussion Rörelsen av armbågens ben bedömdes vara mer anatomiskt korrekt, med hänsyn till stödet från de posteriora ligamentet och armbågens ledkapsel. Den maximala islagskraften i humerus minskade och uppträdde tidigare i simuleringen hos den uppdaterade modellen jämfört med originalet. Detta tros bero på reducerat avstånd mellan armbågens ben genom ökandet av skaltjockleken hos det humeralakortikala benet. Modelluppställningen motsvarade experimentets uppställning. Konklusion De övre extremiteterna av THUMS förfinades i syfte att förbättra biofideliteten. Fokus låg på armbågens anatomiska respons under ett axielltislag. Både ytterligare förbättringar av modellen och utökad validering mot andra experimentella islag rekommenderas. / Technology
4

Biomechanical Characterization of the Human Upper Thoracic Spine – Pectoral Girdle (UTS-PG) System: Anthropometry, Dynamic Properties, and Kinematic Response Criteria for Adult and Child ATDs

Stammen, Jason Anthony 29 August 2012 (has links)
No description available.
5

The Effect of Seatbelt Pretensioner and Side Airbag Combined Loading on Thoracic Injury in Small, Elderly Females in Side Impact Automotive Collisions

Linton, Evan Robert January 2021 (has links)
No description available.
6

Entwicklung eines biofidelen Dummys zur Darstellung komplexer Verletzungen beim Fahrzeugcrash

Härtel, Benjamin 31 July 2024 (has links)
Für die Fahrzeugsicherheit und die Bewertung von Fahrzeugstrukturen spielt die Entwicklung von Crashtest-Dummys eine zentrale Rolle. Diese menschenähnlichen Puppen werden bei Crashtests eingesetzt, um die Auswirkungen von Kollisionen auf den Körper zu untersuchen. Der Stand des Wissens zeigt, dass aktuelle Crashtest-Dummys nach dem Prinzip der Ermittlung von physikalischen Belastungsgrößen arbeiten. Die komplexe Verletzungsentstehung infolge von Verkehrsunfällen lässt sich damit nicht vollständig darstellen. Ziel dieser Arbeit ist die Entwicklung, Konstruktion und Erprobung eines neuartigen Dummys mit biofidelen Eigenschaften zur Darstellung komplexer Verletzungen. Es wird ein Konzept entwickelt, mit dem Verletzungen durch Materialschäden direkt am Dummy dargestellt werden können. Die Konstruktion des biofidelen Dummys orientiert sich an der menschlichen Anatomie und Trauma-Biomechanik. Mit der Auswahl unterschiedlicher Werkstoffe wird ein Dummy gefertigt, der viele komplexe Verletzungen direkt darstellt. Im Rahmen dieser Arbeit wurde der biofidele Dummy in Schlittenversuchen und Crashtests untersucht. Die erfolgreiche Validierung des biofidelen Dummys zeigt, dass es möglich ist, eine Korrelation zwischen Materialschäden am Dummy und menschlichen Verletzungen herzuleiten.

Page generated in 0.0703 seconds