• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Durability of Airfield Concrete Exposed to Aircraft De-icers

Wijoyo, Irene Antonia January 2007 (has links)
A large portion of an airport property is occupied by runways and taxiways, which must be kept in excellent condition to ensure the safety of the airplanes, and the people on board. Any free objects on the airfield can cause damage to aircraft and are a possible danger to both the airplanes and the passengers. However, deterioration of the concrete airfield can be a major hazard and the presence of de-icing and anti-icing fluids may accelerate degradation. The focus of this project was the evaluation and assessment of aircraft de-icing and anti-icing fluids on the deterioration of airfield concrete. These fluids are used to remove and prevent snow and ice formation on aircraft by lowering the freezing temperature of water. The primary component in both fluids is ethylene glycol, while additives, which are proprietary and unknown, are mixed in to control various properties. Very little research has been done regarding the effect of the de-icer and anti-icers on the concrete deterioration. The aim of this study was to gain a better understanding of its influence on the deterioration of airfield concrete through a series of mechanical and electro-chemical tests, as well as microscopic and elemental analysis. Based on the comparative experiments and analyses performed using water, ethylene glycol, de-icer, and anti-icer, it appears that de-icing fluids do not prematurely cause concrete deterioration. In addition, experimental procedures in this study utilized the de-icing fluids as a concentrate, which are unrealistic conditions on an airfield, where dilution occurs from the addition of water and the presence of snow and ice. There was precipitate formation in all cases of cement paste exposure to de-icing fluid, however, which indicates that reactions are occurring and should be investigated further to determine the long term effects on concrete. With respect to the scope of this study, it was determined that the use of de-icers and anti-icers cause no significant detrimental effects on concrete mechanical properties and durability.
2

The Durability of Airfield Concrete Exposed to Aircraft De-icers

Wijoyo, Irene Antonia January 2007 (has links)
A large portion of an airport property is occupied by runways and taxiways, which must be kept in excellent condition to ensure the safety of the airplanes, and the people on board. Any free objects on the airfield can cause damage to aircraft and are a possible danger to both the airplanes and the passengers. However, deterioration of the concrete airfield can be a major hazard and the presence of de-icing and anti-icing fluids may accelerate degradation. The focus of this project was the evaluation and assessment of aircraft de-icing and anti-icing fluids on the deterioration of airfield concrete. These fluids are used to remove and prevent snow and ice formation on aircraft by lowering the freezing temperature of water. The primary component in both fluids is ethylene glycol, while additives, which are proprietary and unknown, are mixed in to control various properties. Very little research has been done regarding the effect of the de-icer and anti-icers on the concrete deterioration. The aim of this study was to gain a better understanding of its influence on the deterioration of airfield concrete through a series of mechanical and electro-chemical tests, as well as microscopic and elemental analysis. Based on the comparative experiments and analyses performed using water, ethylene glycol, de-icer, and anti-icer, it appears that de-icing fluids do not prematurely cause concrete deterioration. In addition, experimental procedures in this study utilized the de-icing fluids as a concentrate, which are unrealistic conditions on an airfield, where dilution occurs from the addition of water and the presence of snow and ice. There was precipitate formation in all cases of cement paste exposure to de-icing fluid, however, which indicates that reactions are occurring and should be investigated further to determine the long term effects on concrete. With respect to the scope of this study, it was determined that the use of de-icers and anti-icers cause no significant detrimental effects on concrete mechanical properties and durability.

Page generated in 0.0366 seconds