• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 9
  • 8
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 107
  • 107
  • 41
  • 27
  • 22
  • 21
  • 20
  • 16
  • 15
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Role of Constraints and Vehicle Concepts in Transport Design: A Comparison of Cantilever and Strut-Braced Wing Airplane Concepts

Ko, Yan-Yee Andy 15 May 2000 (has links)
The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a strut-braced wing (SBW) aircraft compared to similarly designed cantilever wing aircraft. In this study, four different configurations are examined: cantilever wing aircraft, fuselage mounted engine SBW, wing mounted engine SBW, and wingtip mounted engine SBW. The cantilever wing design is used as a baseline for comparison. Two mission profiles were used. The first called for a 7380 nmi range with a 305 passenger load based on a typical Boeing 777 mission. The second profile was supplied by Lockheed Martin Aeronautical Systems (LMAS) and has a 7500 nmi range with a 325 passenger load. Both profiles have a 0.85 cruise Mach number and a 500 nmi reserve range. Several significant refinements and improvements have been made to the previously developed MDO code for this study. Improvements included using ADIFOR (Automatic Differentiation for FORTRAN) to explicitly compute gradients in the design code. Another major change to the MDO code is the improvement of the optimization architecture to allow for a more robust optimization process. During the Virginia Tech SBW study, Lockheed Martin Aeronautical Systems (LMAS) was tasked by NASA Langley to evaluate the results of previous SBW studies. During this time, the original weight equations which were obtained from NASA Langley's Flight Optimization System (FLOPS) was replaced by LMAS proprietary equations. A detailed study on the impact of the equations from LMAS on the four designs was done, comparing them to the designs that used the FLOPS equations. Results showed that there was little difference in the designs obtained using the new equations. An investigation of the effect of the design constraints on the different configurations was performed. It was found that in all the design configurations, the aircraft range proved to be the most crucial constraint in the design. However, results showed that all three SBW designs were less sensitive to constraints than the cantilever wing aircraft. Finally, a double-deck fuselage concept was considered. A double deck fuselage configuration would result in a greater wing/strut intersection angle which would, in turn, reduce interference drag at that section. Due to the lack of available data on double deck fuselage aircraft, a detailed study of passenger and cargo layout was done. Optimized design showed that there was a small improvement in takeoff gross weight and fuel weight over the single-deck fuselage SBW results when compared with a similarly designed cantilever wing aircraft. / Master of Science
52

Multidisciplinary Design Optimization of a Strut-Braced Wing Aircraft

Grasmeyer, Joel M. III 07 May 1998 (has links)
The objective of this study is to use Multidisciplinary Design Optimization (MDO) to investigate the use of truss-braced wing concepts in concert with other advanced technologies to obtain a significant improvement in the performance of transonic transport aircraft. The truss topology introduces several opportunities. A higher aspect ratio and decreased wing thickness can be achieved without an increase in wing weight relative to a cantilever wing. The reduction in thickness allows the wing sweep to be reduced without incurring a transonic wave drag penalty. The reduced wing sweep allows a larger percentage of the wing area to achieve natural laminar flow. Additionally, tip-mounted engines can be used to reduce the induced drag. The MDO approach helps the designer achieve the best technology integration by making optimum trades between competing physical effects in the design space. To perform this study, a suite of approximate analysis tools was assembled into a complete, conceptual-level MDO code. A typical mission profile of the Boeing 777-200IGW was chosen as the design mission profile. This transport carries 305 passengers in mixed class seating at a cruise Mach number of 0.85 over a range of 7,380 nmi. Several single-strut configurations were optimized for minimum takeoff gross weight, using eighteen design variables and seven constraints. The best single-strut configuration shows a 15% savings in takeoff gross weight, 29% savings in fuel weight, 28% increase in L/D, and a 41% increase in seat-miles per gallon relative to a comparable cantilever wing configuration. In addition to the MDO work, we have proposed some innovative, unconventional arch-braced and ellipse-braced concepts. A plastic solid model of one of the novel configurations was created using the I-DEAS solid modeling software and rapid prototyping hardware. / Master of Science
53

Regional Transport Aircraft Design using Turbo Electric Distributed Propulsion (TEDiP) System

Polepeddi, Vachaspathy 06 July 2022 (has links)
As the world moves towards environmental sustainability, the civil aviation enterprise has responded by setting challenging goals for significantly increased energy efficiency and reduced harmful emissions into the atmosphere as codified by National Aeronautics and Space Administration (NASA) and Advisory Council for Aircraft Innovation and Research in Europe (ACARE). The airline industry supports these goals because of their positive impact on operational cost and the environment. Achieving such goals requires introduction of novel technologies and aircraft concepts. Previous studies have shown that electrified aircraft can be effective in meeting these challenges.While there are several mechanisms to incorporate novel technologies for electrified aircraft, two such technologies: turbo-electric propulsion and distributed propulsion, are used in this research. Integration of these two technologies with the airframe leverages the well-known favorable interference between the wing and the tractor propeller wake to provide increased lift during takeoff.In the present research, the advantages and disadvantages of integrating a turbo-electric distributed propulsion (TEDiP) system are assessed for a regional transport aircraft (RTA). With near term motor technology, an improvement in trip fuel burn was observed on the four and six propeller variants of the TEDiP aircraft. The takeoff field length(TOFL) also improved in all three design variants which is a direct result of the working of distributed propulsion leading to better aerodynamic performance at takeoff conditions.The approach and findings for this research are reported in this thesis. / Master of Science / While air transportation system is considered the fastest means to travel, the avi-ation industry is responsible for 2.1% of all human-induced CO2 emissions, whichputs a renewed emphasis on environmental sustainability. There is heightenedinterest in exploring alternative propulsion technologies for aviation to mitigatethe effects of ever increasing demand for air travel coupled with fossil fuel pricevolatility.Ambitious plans have been outlined by leading aerospace organizations to reduceharmful emissions into the atmosphere. Achieving these ambitious goals requiresdevelopment and introduction of game changing technologies and aircraft con-cepts. Few such concepts include novel propulsion systems like all electric andhybrid-electric propulsion, distributed propulsion, and boundary layer ingestion.The X-57 is a novel all-electric aircraft being developed by NASA as a technologydemonstrator and makes use of multiple electric motors and propellers placedon the wing.Owing to battery technology limitations, all-electric and hybrid-electric propul-sion are not considered as viable options. In the near term, incorporatingdistributed propulsion alongside turbo-electric propulsion, for a Turbo-ElectricDistributed Propulsion(TEDiP) system may be a promising option in the near--to-mid-term. The overall goal of the present study is to investigate potentialbenefits and penalties of TEDiP systems for regional transport aircraft (RTA).To perform this study, the aerodynamics module of Pacelab Aircraft PreliminaryDesign (APD) Multi-Disciplinary Optimization (MDAO) framework is alteredto account for changes in wing-propeller aerodynamics due to the interactionof wing and multiple propellers. This required selection of a cost-effective toolthat captures aerodynamic data for multiple propellers and wing. VSPAEROis the aerodynamic tool of choice for this research. Aerodynamic data fromVSPAERO is coupled to APD and three TEDiP design variants with four, sixand eight propeller are designed with the ATR 72-500 as the baseline. Thebenefits and penalties of integrating the TEDiP system onto these variants isinvestigatedThe results show that a performance comparable to the baseline can be achievedin the near term with the four propeller variant even with current electricalsystems technology trends with a small weight penalty, and in the medium termon a six propeller variant. A decrease in trip fuel burn and improved takeofffield length(TOFL) performance justifies the usage of TEDiP systems.
54

Optimal Geometric Trimming of B-spline Surfaces for Aircraft Design

Zhang, Xinyu 22 July 2005 (has links)
B-spline surfaces have been widely used in aircraft design to represent different types of components in a uniform format. Unlike the visual trimming of B-spline surfaces, which hides unwanted portions in rendering, the geometric trimming approach provides a mathematically clean representation. This dissertation focuses on the geometric trimming of fuselage and wing components represented by B-spline surfaces. To trim two intersecting surfaces requires finding their intersections effectively. Most of the existing algorithms focus on providing intersections suitable for rendering. In this dissertation, an intersection algorithm suitable for geometric trimming of B-spline surfaces is presented. The number of intersection points depends on the number of isoparametric curves selected, and thus is controllable and independent of the error bound of intersection points. Trimming curves are classified and a new scheme for trimming by a closed trimming curve is provided to improve the accuracy. The surface trimmed by a closed trimming curve is subdivided into four patches and the trimming curve is converted into two open trimming curves. Two surface patches are created by knot insertion, which match the original surface exactly. The other two surface patches are trimmed by the converted open trimming curves. Factors affecting the trimming process are discussed and metrics are provided to measure trimming errors. Exact trimming is precluded due to the high degree of intersections. The process may lead to significant deviation from the corresponding portion on the original surface. Optimizations are employed to minimize approximation errors and obtain higher accuracy. The hybrid Parallel Tempering and Simulated Annealing optimization method, which is an effective algorithm to overcome the slow convergence waiting dilemma and initial value sensitivity, is applied for the minimization of B-spline surface representation errors. The results confirm that trimming errors are successfully reduced. / Ph. D.
55

Multidisciplinary Design Optimization of Subsonic Fixed-Wing Unmanned Aerial Vehicles Projected Through 2025

Gundlach, John Frederick 30 April 2004 (has links)
Through this research, a robust aircraft design methodology is developed for analysis and optimization of the Air Vehicle (AV) segment of Unmanned Aerial Vehicle (UAV) systems. The analysis functionality of the AV design is integrated with a Genetic Algorithm (GA) to form an integrated Multi-disciplinary Design Optimization (MDO) methodology for optimal AV design synthesis. This research fills the gap in integrated subsonic fixed-wing UAV AV MDO methods. No known single methodology captures all of the phenomena of interest over the wide range of UAV families considered here. Key advancements include: 1) parametric Low Reynolds Number (LRN) airfoil aerodynamics formulation, 2) UAV systems mass properties definition, 3) wing structural weight methods, 4) self-optimizing flight performance model, 5) automated geometry algorithms, and 6) optimizer integration. Multiple methods are provided for many disciplines to enable flexibility in functionality, level of detail, computational expediency, and accuracy. The AV design methods are calibrated against the High-Altitude Long-Endurance (HALE) Global Hawk, Medium-Altitude Endurance (MAE) Predator, and Tactical Shadow 200 classes, which exhibit significant variations in mission performance requirements and scale from one another. Technology impacts on the design of the three UAV classes are evaluated from a representative system technology year through 2025. Avionics, subsystems, aerodynamics, design, payloads, propulsion, and structures technology trends are assembled or derived from a variety of sources. The technology investigation serves the purposes of validating the effectiveness of the integrated AV design methods and to highlight design implications of technology insertion through future years. Flight performance, payload performance, and other attributes within a vehicle family are fixed such that the changes in the AV designs represent technology differences alone, and not requirements evolution. The optimizer seeks to minimize AV design gross weight for a given mission requirement and technology set. All three UAV families show significant design gross weight reductions as technology improves. The predicted design gross weight in 2025 for each class is: 1) 12.9% relative to the 1994 Global Hawk, 2) 6.26% relative to the 1994 Predator, and 3) 26.3% relative to the 2000 Shadow 200. The degree of technology improvement and ranking of contributing technologies differs among the vehicle families. The design gross weight is sensitive to technologies that directly affect the non-varying weights for all cases, especially payload and avionics/subsystems technologies. Additionally, the propulsion technology strongly affects the high performance Global Hawk and Predator families, which have high fuel mass fractions relative to the Tactical Shadow 200 family. The overall technology synergy experienced 10-11 years after the initial technology year is 6.68% for Global Hawk, 7.09% for Predator, and 4.22% for the Shadow 200, which means that the technology trends interact favorably in all cases. The Global Hawk and Shadow 200 families exhibited niche behavior, where some vehicles attained higher aerodynamic performance while others attained lower structural mass fractions. The high aerodynamic performance Global Hawk vehicles had high aspect ratio wings with sweep, while the low structural mass fraction vehicles had straight, relatively low aspect ratios and smaller wing spans. The high aerodynamic performance Shadow 200 vehicles had relatively low wing loadings and large wing spans, while the lower structural mass fraction counterparts sought to minimize physical size. / Ph. D.
56

The Effect of Reducing Cruise Altitude on the Topology and Emissions of a Commercial Transport Aircraft

McDonald, Melea E. 02 September 2010 (has links)
In recent years, research has been conducted for alternative commercial transonic aircraft design configurations, such as the strut- braced wing and the truss-braced wing aircraft designs, in order to improve aircraft performance and reduce the impact of aircraft emissions as compared to a typical cantilever wing design. Research performed by Virginia Tech in conjunction with NASA Langley Research Center shows that these alternative configurations result in 20% or more reduction in fuel consumption, and thus emissions. Another option to reduce the impact of emissions on the environment is to reduce the aircraft cruise altitude, where less nitrous oxides are released into the atmosphere and contrail formation is less likely. The following study was performed using multidisciplinary design optimization (MDO) in ModelCenterTM for cantilever wing, strut-braced wing, and truss-braced wing designs and optimized for minimum takeoff gross weight at 7730 NM range and minimum fuel weight for 7730 and 4000 NM range at the following cruise altitudes: 25,000; 30,000; and 35,000 ft. For the longer range, both objective functions exhibit a large penalty in fuel weight and takeoff gross weight due to the increased drag from the fixed fuselage when reducing cruise altitude. For the shorter range, there was a slight increase in takeoff gross weight even though there was a large increase in fuel weight for decreased cruise altitudes. Thus, the benefits of reducing cruise altitude were offset by increased fuel weight. Either a two-jury truss-braced wing or telescopic strut could be studied to reduce the fuel penalty. / Master of Science
57

Structural Optimization and Design of a Strut-Braced Wing Aircraft

Naghshineh-Pour, Amir H. 15 December 1998 (has links)
A significant improvement can be achieved in the performance of transonic transport aircraft using Multidisciplinary Design Optimization (MDO) by implementing truss-braced wing concepts in combination with other advanced technologies and novel design innovations. A considerable reduction in drag can be obtained by using a high aspect ratio wing with thin airfoil sections and tip-mounted engines. However, such wing structures could suffer from a significant weight penalty. Thus, the use of an external strut or a truss bracing is promising for weight reduction. Due to the unconventional nature of the proposed concept, commonly available wing weight equations for transport aircraft will not be sufficiently accurate. Hence, a bending material weight calculation procedure was developed to take into account the influence of the strut upon the wing weight, and this was coupled to the Flight Optimization System (FLOPS) for total wing weight estimation. The wing bending material weight for single-strut configurations is estimated by modeling the wing structure as an idealized double-plate model using a piecewise linear load method. Two maneuver load conditions 2.5g and -1.0g factor of safety of 1.5 and a 2.0g taxi bump are considered as the critical load conditions to determine the wing bending material weight. From preliminary analyses, the buckling of the strut under the -1.0g load condition proved to be the critical structural challenge. To address this issue, an innovative design strategy introduces a telescoping sleeve mechanism to allow the strut to be inactive during negative g maneuvers and active during positive g maneuvers. Also, more wing weight reduction is obtained by optimizing the strut force, a strut offset length, and the wing-strut junction location. The best configuration shows a 9.2% savings in takeoff gross weight, an 18.2% savings in wing weight and a 15.4% savings in fuel weight compared to a cantilever wing counterpart. / Master of Science
58

A systematic approach to design for lifelong aircraft evolution

Lim, Dongwook 06 April 2009 (has links)
Modern aerospace systems rely heavily on legacy platforms and their derivatives. Historical examples show that after a vehicle design is frozen and delivered to a customer, successive upgrades are often made to fulfill changing requirements. Current practices of adapting to emerging needs with derivative designs, retrofits, and upgrades are often reactive and ad-hoc, resulting in performance and cost penalties. Recent DoD acquisition policies have addressed this problem by establishing a general paradigm for design for lifelong evolution. However, there is a need for a unified, practical design approach that considers the lifetime evolution of an aircraft concept by incorporating future requirements and technologies. This research proposes a systematic approach with which the decision makers can evaluate the value and risk of a new aircraft development program, including potential derivative development opportunities. The proposed Evaluation of Lifelong Vehicle Evolution (EvoLVE) method is a two- or multi-stage representation of the aircraft design process that accommodates initial development phases as well as follow-on phases. One of the key elements of this method is the Stochastic Programming with Recourse (SPR) technique, which accounts for uncertainties associated with future requirements. The remedial approach of SPR in its two distinctive problem-solving steps is well suited to aircraft design problems where derivatives, retrofits, and upgrades have been used to fix designs that were once but no longer optimal. The solution approach of SPR is complemented by the Risk-Averse Strategy Selection (RASS) technique to gauge risk associated with vehicle evolution options. In the absence of a full description of the random space, a scenario-based approach captures the randomness with a few probable scenarios and reveals implications of different future events. Last, an interactive framework for decision-making support allows simultaneous navigation of the current and future design space with a greater degree of freedom. A cantilevered beam design problem was set up and solved using the SPR technique to showcase its application to an engineering design setting. The full EvoLVE method was conducted on a notional multi-role fighter based on the F/A-18 Hornet.
59

The airfoil thickness effects on wavy leading edge phenomena at low Reynolds number regime. / Os efeitos da espessura de aerofólio nos fenômenos de bordo de ataque ondulado a regime de baixo número de Reynolds.

Paula, Adson Agrico de 29 April 2016 (has links)
Recently, the wavy leading edge airfoils, inspired by the humpback whale´s flipper, have been investigated, as flow control mechanisms, at low Reynolds numbers in order to improve aerodynamic performance in this particular flow regime. The overall aim of this work is to investigate the airfoil geometric effects on wavy leading edge phenomena in the low Reynolds number regime. Experimental investigations were carried out correlating force measurements with mini-tuft and oil visualizations in order to understand the airfoil thickness effects on wavy leading edge phenomena. Three sets of airfoil thickness were tested (NACA 0012, NACA 0020 and NACA 0030), each set consisting of smooth plus three wavy configurations (A=0.11c, ?=0.40c; A=0.03c, ?=0.40c and A=0.03c, ?=0.11c); Reynolds number was varied between 50,000 and 290,000. The results present many findings that were not possible in previous studies due the fact that these investigations were constrained to specific geometries and/or flow conditions. At higher Reynolds number, the decrease in airfoil thickness leads the airfoils to leading edge stall characteristics causing the lowest aerodynamic deterioration for the thinnest wavy airfoil as compared to smooth configuration in the pre-stall regime. In addition, the results show impressive tubercle performance in the lowest Reynolds number. For any tubercle geometry and airfoil thickness, the wavy leading edge airfoils present higher maximum lift values as compared to smooth configurations showing an unprecedented increase in performance for a full-span model tested in the literature. The flow visualizations present two flow mechanisms triggered by secondary flow: three-dimensional laminar separation bubbles and vortical structures. Regarding three-dimensional laminar bubbles, the results confirm some of the few previous experimental and numerical studies, and presents for the first time these structures as a very efficient flow control mechanism in the post-stall regime justifying the impressive increase in maximum lift in the lowest Reynolds number. Besides that, two characteristics of laminar bubbles, \"tipped-bubbles\" and \"elongated-bubbles\", are identified with different effects in the pre-stall regime. This thesis presents higher tubercle performance for thinner airfoils (NACA 0012) and/or lower Reynolds number conditions (Re=50,000) showing clearly that an optimum performance lead the \"tubercles\" to operate under conditions of leading edge flow separation conditions. Therefore, a design space for tubercles conducted to leading edge stall characteristics confirming the hypothesis of Stanway (2008) eight years before. / Recentemente, aerofólios com bordo de ataque ondulados, inspirados na nadadeira da baleia jubarte, tem sido investigados como mecanismo de controle de escoamento para baixo número de Reynolds com a finalidade de se aumentar o desempenho aerodinâmico neste específico regime de escoamento. O objetivo geral deste trabalho é investigar os efeitos geométricos do aerofólio nos fenômenos do bordo de ataque ondulado na condição de baixo número de Reynolds. Investigações experimentais foram realizadas correlacionando medições de forças com visualizações de lã e óleo a fim de compreender os efeitos da espessura do aerofólio sobre os fenômenos de bordo de ataque ondulado. Três conjuntos de espessura de aerofólios foram testados (NACA 0012, NACA 0020 e NACA 0030) na faixa de número de Reynolds entre 50,000 e 290,000, onde cada conjunto tem um aerofólio liso e três ondulados (A = 0.11c, ? = 0.40c; A = 0.03c, ? = 0.40c e A = 0.03c, 0.11c ? =0.11c). O dados experimentais mostram importantes resultados que não foram possíveis em estudos anteriores devido às investigações serem restritas à geometria ou/e condição de escoamento específicas. O resultados de medida de força mostram que a diminuição da espessura do aerofólio conduz às características de separação de escoamento de bordo de ataque que causam menor deterioração aerodinâmica nos aerofólios ondulados finos quando comparados aos lisos no regime de pré-stall. Além disso, os resultados mostram um desempenho destacado do bordo de ataque ondulado para condição de menor número de Reynolds. Em quaisquer espessuras de aerofólio, os bordos ondulados apresentam valores de sustentação máxima maiores quando comparado aos aerofólios lisos mostrando assim resultado inédito na literatura para modelos ondulados bi-dimensionais. As visualizações de óleo evidenciaram dois mecanismos de controle de escoamento desencadeadas pelo escoamento secundário: bolhas de separação laminar tridimensionais e estruturas vorticais. Os resultados confirmam alguns poucos estudos experimentais e numéricos anteriores relacionadas com bolhas tridimensionais, e apresenta pela primeira vez estas estruturas como um mecanismo muito eficiente de controle de escoamento em regime de pós-stall justificando o aumento de máxima sustentação para o menor número de Reynolds. Adicionalmente, foram identificadas duas estruturas de bolhas tridimensionais nomeados aqui como \"bolhas com pontas\" e \"bolhas alongadas\" que causam distintos efeitos no regime de pré-stall. Esta tese apresenta como resultado maior desempenho para aerofólios ondulados com menor espessura (NACA 0012) e/ou para condições de menor número de Reynolds (Re=50,000)mostrando claramente que estas características levam as ondulações a operarem em condições de stall de bordo de ataque assim tendo um desempenho superior. Portanto, um espaço de projeto para tubérculos conduz às características de stall de bordo de ataque confirmando a suposição de Stanway (2008) oitos anos antes.
60

Model Based Aircraft Control System Design and Simulation

M Venkata, Raghu Chaitanya January 2009 (has links)
<p>Development of modern aircraft has become more and more expensive and time consuming. In order to minimize the development cost, an improvement of the conceptual design phase is needed. The desired goal of the project is to enhance the functionality of an in house produced framework conducted at the department of machine design, consisting of parametric models representing a large variety of aircraft concepts.</p><p>The first part of the work consists of the construction of geometric aircraft control surfaces such as flaps, aileron, rudder and elevator parametrically in CATIA V5.</p><p>The second part of the work involves designing and simulating an Inverse dynamic model in Dymola software.</p><p>An Excel interface has been developed between CATIA and Dymola. Parameters can be varied in the interface as per user specification; these values are sent to CATIA or Dymola and vice versa. The constructed concept model of control surfaces has been tested for different aircraft shapes and layout. The simulation has been done in Dymola for the control surfaces.</p>

Page generated in 0.0382 seconds