• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 427
  • 152
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 12
  • 8
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 740
  • 128
  • 108
  • 101
  • 88
  • 88
  • 85
  • 80
  • 79
  • 77
  • 69
  • 68
  • 65
  • 60
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

A Method for Approximating the Distributed Loads of an Airplane by Sets of Point Loads

Austin, Charles Wayne January 1957 (has links)
This paper gives the derivation of a method for determining the forces to be applied to these points which will simulate the load distributed over all the airplane.
212

Theoretical and numerical analysis of supersonic inlet starting by mass spillage

Najafiyazdi, Alireza. January 2007 (has links)
No description available.
213

Nonlinear steady and unsteady aerodynamics of wings and wing-body-combinations

Atta, Essam H. 08 July 2010 (has links)
A modified vortex lattice method is developed to solve for the nonlinear three-dimensional unsteady incompressible flow over delta wings. Symmetric motions (pitching, heaving) and asymmetric motions (roll, yaw) are considered. Then the method is generalized to treat the nonlinear three-dimensional steady flow for bodies and wing body combinations. Numerical examples include variety of shapes and comparison with existing experimental data and other numerical methods over a wide range of angle of attack shows good agreement. For bodies alone the results deteriorate downstream of the separation region, while for wing-body combinations the agreement with the experimental data is good as long as the body separation effect is not large. The developed computer codes should provide a useful tool in the design of aircraft and missiles. / Ph. D.
214

The effect of a fillet on a wing/body junction flow

Dewitz, Michael B. 21 July 2010 (has links)
Time-averaged properties of a wing-body-junction flow surrounding a cylindrical wing with a 1.5:1 elliptical nose and a NACA 0020 tail have been compared to those for the above wing with a 1.5 inch radius fillet normal to the wing's surface. An attempt was made to determine the effectiveness of the fillet in improving the uniformity of the wing-body junction flow downstream of the wing, and in attenuating the junction vortex. Measurements included oil-flow visualizations and surface-static-pressure measurements of the flattest floor surrounding the wings, and hot-wire anemometer measurements made in the flow downstream of the wing. Calculations of the drag and the volumetric entrainment of free-stream fluid due to the presence of the baseline wing and wing with fillet were performed. The results of these calculations are important criteria used to determine the effectiveness of the fillet as a flow control device. Results show that the vortex is present in each case, and its size is slightly larger for the wing with fillet as compared to the baseline wing. For each test case, the drag and volumetric entrainment of free-stream fluid were the nearly same for the wing with fillet as compared to the baseline wing. It was also found that increases in the boundary-layer thickness cause only small increases in the size of the junction vortex. The 1.5 inch radius fillet does not appear to be a viable flow control device. / Master of Science
215

Control authority assessment in aircraft conceptual design

Kay, Jacob 24 March 2009 (has links)
All aircraft must meet controllability requirements to be certified for commercial use or adopted by the mi1itary. Aircraft maneuverability is often 1imited by control authority. Thus, it is essential for designers to evaluate a candidate concept's control authority early in the conceptual design phase. In this thesis, a methodology for rapid control power evaluation of preliminary design configurations against requirements at the key flight conditions is established. First, a collection of critical flight conditions to be considered using this methodology is identified. To examine a variety of aircraft configurations and accelerate the process of estimating stability and control derivatives, a FORTRAN program using the Vortex-Lattice Method was written to estimate subsonic, low angle-of-attack aerodynamics. Then, a spreadsheet processes the aerodynamic data to check whether the design configuration possesses adequate control power to satisfy the requirements of the critical flight conditions. / Master of Science
216

Detection of In-Flight Icing Through the Analysis of Hydrometeors with a Vertically Pointing Radar

Lilly, Jennifer January 2004 (has links)
Note:
217

An investigation of the dynamic lateral stability and control of a parawing vehicle

Chambers, Joseph Ray January 1966 (has links)
Parawing vehicles may have unusual values of many of the mass and aerodynamic factors affecting dynamic lateral stability and control. These unusual characteristics are due in large part to the fact that the center of gravity of parawing vehicles is located far below the parawing, whereas conventional aircraft usually have the vertical center-of-gravity location near the plane of the wings. The present thesis is an analytical investigation of the dynamic lateral stability and control of a typical parawing vehicle. The analysis was made using three-degree-of-freedom, rigid body equations of motion. Stability derivatives used in the calculations were obtained from static and dynamic force tests of a parawing model with rigid leading-edge and keel members. The analysis is treated mainly in terms of the effects of vertical center-of-gravity position, since this was found to be the most significant factor affecting the lateral stability and control of the hypothetical vehicle. / Master of Science
218

Combat aircraft scenario tradeoff models for conceptual design evaluation

Cabrera, Antonio Trani January 1988 (has links)
The purpose of this research is to apply engineering-based knowledge to the field of combat aircraft survivability, and to create scenario-specific models in order to estimate the tradeoff between aircraft survivability and lethality metrics at the encounter and sortie levels. The development of scenario-specific models serves to identify and quantify technological changes that have Ieverage on the overall performance of the aircraft from a survivability point of view. Also, the models focus on the fighter aircraft susceptibility assessment and are capable of incorporating outputs from offline studies as inputs, such as in the area of vulnerability assessment where extensive databases are available. The mission scenario models are microscopic in nature and relate important conceptual aircraft design parameters such as thrust-to-mass ratio, wing loading, empty mass, maneuverability, etc. and operational parameters (e.g., weapon payload, range, loiter time, flight profiles, etc.) to the aircraft sortie survivability and lethality under various threat scenarios. This research proposes a methodology to estimate survivability and lethality aircraft performance at the sortie level where aircraft parameters can be implemented into scenario-specific models to assess their impact upon survivability-related metrics. While the project was conceived with naval aircraft in mind, the methodology, to the extent possible, is not to be aircraft-specific and thus could be applied to any particular design at the conceptual stage. / Ph. D.
219

A study of active control techniques for noise reduction in an aircraft fuselage model

Jones, James D. January 1987 (has links)
A simplified cylindrical model is used to investigate the elementary mechanisms of control of sound transmission into aircraft cabins by two active control techniques: propeller synchrophasing and active vibration control. Propeller synchrophasing involves controlling the relative rotational phase of the engines to achieve maximum cabin noise reduction. Active vibration control involves structurally controlling the vibrational response of the cabin wall to reduce the important modes which transmit their energy into the cabin. Noise reductions for harmonic excitation at acoustic cavity resonance are shown to be in excess of 20 dB throughout most of the cavity whether synchrophasing or active vibration control is used. Off-resonance reductions are substantially less due to increased modal density requiring a larger number of actuators for effective control of the complex sound field. Additional studies were performed using synchrophasing in conjunction with active vibration control to study their joint capabilities in controlling complex sound fields. The dual control system displayed improved control performance with noise reductions on the order of 25-35 dB and a more uniform sound field. Also, the complementary control characteristics of the system clearly demonstrated effective control of orthogonal acoustic modes of the cavity. However, the improved effectiveness of the control system was dependent upon judiciously positioning the actuators for optimal control of the sound field. An independent study was performed to identify the effects of a complex geometry on sound transmission into an aircraft fuselage model interior. For this study, a geometrically scaled cabin floor was installed in the unstiffened test cylinder to investigate the structural and acoustic influence of the simulated cabin floor. Results indicated that the stiffening of the cylindrical model associated with insertion of the floor strongly influenced the structural response of the cylinder but generally had little effect on the coupled pressure response. Conversely, the modification of the interior acoustic cavity tended to have little influence on the cylinder response but substantially reduced the coupled pressure response. Thus, this investigation identified the fundamental mechanisms of control of sound transmission into simplified models of aircraft fuselages by active control techniques. / Ph. D.
220

Design of a coaxial split flow pulse detonation engine

Hall, Philip D. 06 1900 (has links)
Future Navy Capabilities indicate the need for a supersonic cruise missile. Thus the need exists for a low cost, light-weight, and efficient means of supersonic propulsion. NPS has been developing the Pulse Detonation Engine, which in theory has a thermodynamic efficiency greater than 50% as compared to 35% for state of the art constant-pressure cycles currently in use in gas turbines/ramjets/scramjets. Nonetheless, there are two major problems in the development of this engine. These are the increase of the propulsive efficiency by removing the oxygen-assisted initiator currently in use, and the reduction of internal total pressure losses caused by the highly constrictive internal flow-path geometry currently required to promote the deflagration to detonation transition (DDT). The aforementioned problems have been addressed and a viable design proposed through the implementation of a novel Transient Plasma Ignition system and a split-flow path engine geometry as described in this work. Future work will concentrate on the development of a performance measurement test rig to experimentally assess the designs presented herein. / US Navy (USN) author.

Page generated in 0.0657 seconds