• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Predatory Cues on Copper Sensitivity and Metabolic Rate in Gambusia affinis

Campbell, Melissa N 01 May 2017 (has links)
Organisms living in aquatic environments are subject to a number of stressors from natural (temperature, predation, food availability) and anthropogenic origins (pesticides, metals, etc). Natural stressors may amplify the effects of contaminants and increase an organism’s sensitivity to them. Understanding the impact of these combined factors is therefore essential for the practical management of contaminants. This study sought to examine how predatory cues affect copper tolerance in the mosquitofish, Gambusia affinis. The influence of predatory cues on fish metabolic rate was also evaluated to gain insight on any interactive effects between the natural stressor and copper. Alarm cues, chemicals released into the water when prey are injured were obtained from humanely sacrificed G. affinis, and kairomones, passive cues released by predators, were obtained from adult bluegill (Lepomis macrochirus). Paired 96-h toxicity tests with copper and predatory cue and with copper alone were conducted to determine the influence of predatory cues on G. affinis sensitivity to the metal. In the presence of alarm cue neither G. affinis copper tolerance or metabolic rate was altered. At copper concentrations ranging from 0.25mg Cu/L - 0.50mg Cu/L kairomone presence had no influence on survival, while between 0.50mg Cu/L and 1.0mg Cu/L, kairomone presence increased survival. Kairomone had no significant effect on metabolic rate. The apparent antagonistic effect between kairomone and copper may have resulted from the presence of organic material from predator-derived cues or from potential changes in fish behavior. This study adds to the growing body of literature which illustrates the complexity of stressor interactions in aquatic systems.
2

Enemy Exacerbation: Effects of Predator Stress on Sulfate Lethality in Freshwater Amphipods (Gammarus minus)

Chapman, Trevor 01 August 2017 (has links) (PDF)
Predator cues can influence how aquatic organisms respond to anthropogenic contaminants. This study examined the effects of predator cues on behavior, metabolic rate, and sulfate (as Na2SO4) toxicity in amphipods (Gammarus minus). Predator cues included alarm cue (macerated conspecifics) and kairomone from mosquitofish (Gambusia affinis). Amphipods decreased activity and increased time in refuge when exposed to alarm cue, and increased time in refuge when exposed to kairomone. While median lethal concentrations (96-h LC50) were not influenced by predator cues, analysis of dose response curves indicated that kairomone exposure increased amphipod sensitivity to mid-range concentrations of sulfate (500-1,000 mg/L). Amphipods increased oxygen consumption in response to kairomone but not alarm cue. The influence of predator cues on contaminant lethality can be dependent on the type of cue, and physiological endpoints such as metabolic rate may help explain the basis of observed interactions.
3

Life-skills training for juvenile lake sturgeon (Acipenser fulvescens)

2015 January 1900 (has links)
Hatchery supplementation of declining fish populations is used for increasing year-class strength, particularly when fish are released with knowledge of local predators. The ability of young-of-the-year lake sturgeon (Acipenser fulvescens) to avoid predation, as well as their vulnerability to predation, remains undocumented. The objective of my thesis was to determine: 1) whether hatchery-reared, predator-naive juvenile sturgeon would respond to alarm cues from injured conspecific cues, a reliable indicator of predation risk in other fishes; and 2) if sturgeon would learn to identify unknown predators through a Pavlovian-like conditioning with conspecific alarm cues. Releaser-induced recognition learning is a variant of Pavlovian learning in which recognition of a previously neutral stimulus is acquired through the experience of pairing a behaviourally active releasing stimulus and a novel stimulus. Sturgeon were initially conditioned using a behaviourally active stimulus of sturgeon alarm cue, paired with a behaviourally neutral stimulus of novel northern pike (Esox lucius) odour, or were pseudo-conditioned with distilled water paired with pike odour. Following conditioning, sturgeon were tested for recognition of the predator odour 24 hours later. The first population of fish (Rainy River) showed a dramatic antipredator response to alarm cues from the skin of conspecifics, but failed to exhibit learning of a novel predator through conditioning with alarm cues obtained from the skin of conspecifics. However, when Rainy River fish were conditioned with alarm cues from the whole body of conspecifics, they showed strong learning of the predator. Conditioning Wolf River fish to recognize predators with whole body extract had no effect on response to predator odours. However, when the fish were conditioned multiple times there was evidence of predator learning. These results highlight potential opportunities and limitation to life-skill training of artificially reared sturgeon for future conservation initiatives.
4

The Role of Chemical Senses in Predation, Risk Assessment, and Social Behavior of Spiny Lobsters

Shabani, Shkelzen 17 November 2008 (has links)
Chemical senses play a critical role in predator-prey and social interactions of many animals. Predators often evoke adaptive escape responses by prey, one of which is the release of chemicals that induce adaptive avoidance behaviors from both predators and conspecifics. I explore the use of chemicals in predator-prey and social interactions, using a crustacean model system, the spiny lobster. As predators, spiny lobsters are opportunistic, polyphagous feeders, and they rely heavily on their chemical senses during feeding. Some of their potential prey deter attacks through chemical defenses that act through the spiny lobsters’ chemical senses. An example of this is sea hares, Aplysia californica, which secrete an ink when vigorously attacked by sympatric spiny lobsters, Panulirus interruptus. I show that that this ink defends sea hares from spiny lobsters through several mechanisms that include phagomimicry, sensory disruption, and deterrence, and that the ink’s efficacy is enhanced by its naturally high acidity. As prey, spiny lobsters rely heavily on their chemical senses to assess risk from predators. One way to assess risk of predation is through ‘alarm cues’, which are injury-related chemicals. I show that injured Caribbean spiny lobsters, Panulirus argus, release alarm cues in their hemolymph, and that nearby conspecifics detect these cues using olfaction. Hemolymph from conspecifics induces primarily alarm behavior in the form of retreat, sheltering, and suppression of appetitive responses. In contrast, hemolymph from heterospecifics, depending on phylogenetic relatedness, induces either mixed alarm and appetitive behaviors or primarily appetitive behaviors. Spiny lobsters also use chemical cues to assess risk during social interactions with conspecific. I show that spiny lobsters use urine-borne chemical signals and agonistic behaviors to communicate social status and that these chemical signals are detected exclusively by the olfactory pathway. Dominant animals increase urine release during social interactions, whereas subordinates do not. Experimental prevention of urine release during interactions causes an increase in agonism, but this increase is abolished when urine of dominants is reintroduced. My findings lay the foundation for neuroethological studies of risk-assessment systems mediated by intraspecific chemical cues.
5

Behavioural ecology of foraging and predator avoidance trade-offs in Lake Sturgeon (Acipenser fulvescens)

2014 April 1900 (has links)
I investigated Lake Sturgeon (Acipenser fulvescens) foraging and anti-predator behaviour. My goals were to understand: (1) The role of environmental change on foraging and anti-predator behaviour trade-offs. (2) The relative cost/benefit trade-off between escape behaviour and cover-seeking behaviour. (3) How development of several independent morphological traits affects anti-predator behaviours. I used simulated river mesocosms to study Lake Sturgeon behavioural ecology under controlled conditions. I found: (1) Foraging intensity was significantly higher during the night than the day as well as in turbid environments versus clear environments, indicating that decreased turbidity alone, may in part drive anti-predator behaviour and constrain foraging activity. (2) In high-risk clear-water environments, Lake Sturgeon responded to danger by evoking an escape response and seeking cover in rocky microhabitats. However, in low-risk turbid environments, Lake Sturgeon responded to danger by seeking cover in rocky microhabitats, but not fleeing to a significant degree. Cover-seeking behaviour may therefore be a relatively low-cost/high-benefit anti-predator strategy. (3) Strong evidence for trait co-dependence between escape responses and body size, where larger fish were able to elicit stronger escape responses. I also found that cover-seeking behaviour exhibited a complex multi-tiered relationship, representing a mixture of trait compensation and trait co-specialization that is dependent on specific combinations of morphological traits. These findings are important because they help us understand: (1) The degree to which anti-predator behaviour can be influenced by changing environmental conditions. (2) The relative cost/benefit trade-off between two common anti-predator behaviours. (3) How behaviour and morphology interact in species with a complex anti-predator phenotype.
6

The Metabolic Physiology of Planarian Flatworms

Lewallen, Melissa A 08 1900 (has links)
Using a high throughput closed respirometry method to measure oxygen consumption, I determined metabolic rates in asexual and sexual Schmidtea mediterranea and Girardia dorotocephala, as a function of temperature, taxon, stressors, reproductive mode, age, regeneration, and specific dynamic action. This study has shown that oxygen consumption can reliably be measured in planaria using optode closed respirometry, and also provided a reliable method for measuring wet mass in planaria, which has been a challenge to researchers in the past. This research revealed that oxygen consumption in S. mediterranea is 1.5-2.1X greater in the sexual strain over the asexual strain at 13-18°C. Within the sexual strain, oxygen consumption is 1.5 -2.2X greater in sexually mature adults over the sexually immature groups (hatchlings, juveniles, and regenerating sexuals). Furthermore, I was able to quantify differences in sexual morphology between these groups exhibiting significant differences in oxygen consumption. The results of this research supports a theory of higher metabolic costs with sexual maturity in S. mediterranea. Therefore, this study has established sexual and asexual S. mediterranea as simple, yet attractive models for investigating energetic costs between sexual and asexual phenotypes. This research also provided quantitative values for specific dynamic action in planaria, with a maximum increase in oxygen consumption of 160% induced by feeding, as well as metabolic relationships in planaria involving temperature, age, and regeneration. These values establish planaria as one of the simplest animal models in which common metabolic patterns, such as SDA and poikilothermic temperature sensitivity, have been demonstrated. Therefore, this research has contributed to the overall knowledge of the basic physiology in this animal, providing the framework for future metabolic studies in planaria involving environmental factors, reproduction, regeneration, development, and aging. Information from this study may supplement interpretation and understanding of modern cellular, molecular, and genomic studies in planaria.

Page generated in 0.0941 seconds