• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing the Circulation Response to Snow Albedo Feedback in Climate Change

Baijnath , Janine 28 November 2012 (has links)
Snow Albedo Feedback (SAF) in response to climate change is a process that can amplify the climate warming response to increases in anthropogenic atmospheric CO2 concentrations from the 20th to the 21st Century. Warmer surface air temperature may induce snowmelt and expose darker underlying surfaces which absorb more incoming solar radiation and further increase the ambient temperature. Springtime SAF in the fully Coupled Model Intercomparison Project Phase 3 (CMIP3) models is associated with summertime circulation. However, no clear physical mechanism explaining this link has been found. Furthermore, there is a large intermodel spread in the projection of SAF among the CMIP3 models which is primarily controlled through the parameterization of snow albedo in each model. Limited work was conducted on assessing the response of SAF to that of an isolated controlling parameter such as snow albedo. Here, the uncoupled Geophysical Fluid Dynamics Laboratory Atmospheric Model 2.1 (AM2.1) was used to diagnose SAF in the CMIP3 models by conducting a set of sensitivity experiments with perturbed snow albedo. This was performed to remove indirect external climate factors that may influence SAF and to use the simplified uncoupled model to understand the behaviours exhibited by the complex coupled models. Snow cover extent (SNC) and snow metamorphosis as a function of temperature (TEM) that influences SAF, as well as the knock-on effects of SAF on soil moisture, snow mass, snow melt and circulation were analyzed using both the CMIP3 and AM2.1 models. In addition, it was hypothesized that summertime Land Sea Contrast response to climate change (dLSC) is a physical mechanism that induces summertime circulation patterns in relation to springtime SAF. It is found that the AM2.1 can similarly reproduce SNC and TEM as well as the spread in SAF exhibited in the CMIP3 models. However, no robust link can be determined between SAF and its knock-on effects. Furthermore, the correlation between SAF and dLSC is not significant and thus dLSC is not a physical mechanism that influences the summertime circulation patterns in response to climate change. It is the expectation that these research results can provide an in-depth understanding of the role of SAF among fully coupled GCMs through tests performed by the uncoupled simulation.
2

Assessing the Circulation Response to Snow Albedo Feedback in Climate Change

Baijnath , Janine 28 November 2012 (has links)
Snow Albedo Feedback (SAF) in response to climate change is a process that can amplify the climate warming response to increases in anthropogenic atmospheric CO2 concentrations from the 20th to the 21st Century. Warmer surface air temperature may induce snowmelt and expose darker underlying surfaces which absorb more incoming solar radiation and further increase the ambient temperature. Springtime SAF in the fully Coupled Model Intercomparison Project Phase 3 (CMIP3) models is associated with summertime circulation. However, no clear physical mechanism explaining this link has been found. Furthermore, there is a large intermodel spread in the projection of SAF among the CMIP3 models which is primarily controlled through the parameterization of snow albedo in each model. Limited work was conducted on assessing the response of SAF to that of an isolated controlling parameter such as snow albedo. Here, the uncoupled Geophysical Fluid Dynamics Laboratory Atmospheric Model 2.1 (AM2.1) was used to diagnose SAF in the CMIP3 models by conducting a set of sensitivity experiments with perturbed snow albedo. This was performed to remove indirect external climate factors that may influence SAF and to use the simplified uncoupled model to understand the behaviours exhibited by the complex coupled models. Snow cover extent (SNC) and snow metamorphosis as a function of temperature (TEM) that influences SAF, as well as the knock-on effects of SAF on soil moisture, snow mass, snow melt and circulation were analyzed using both the CMIP3 and AM2.1 models. In addition, it was hypothesized that summertime Land Sea Contrast response to climate change (dLSC) is a physical mechanism that induces summertime circulation patterns in relation to springtime SAF. It is found that the AM2.1 can similarly reproduce SNC and TEM as well as the spread in SAF exhibited in the CMIP3 models. However, no robust link can be determined between SAF and its knock-on effects. Furthermore, the correlation between SAF and dLSC is not significant and thus dLSC is not a physical mechanism that influences the summertime circulation patterns in response to climate change. It is the expectation that these research results can provide an in-depth understanding of the role of SAF among fully coupled GCMs through tests performed by the uncoupled simulation.
3

Climatology and firn processes in the lower accumulation area of the Greenland ice sheet

Charalampidis, Charalampos January 2016 (has links)
The Greenland ice sheet is the largest Northern Hemisphere store of fresh water, and it is responding rapidly to the warming climate. In situ observations document the changing ice sheet properties in the lower accumulation area, Southwest Greenland. Firn densities from 1840 meters above sea level retrieved in May 2012 revealed the existence of a 5.5-meter-thick, near-surface ice layer in response to the recent increased melt and refreezing in firn. As a consequence, vertical meltwater percolation in the extreme summer 2012 was inefficient, resulting in surface runoff. Meltwater percolated and refroze at six meters depth only after the end of the melt season. This prolonged autumn refreezing under the newly accumulated snowpack resulted in unprecedented firn warming with temperature at ten meters depth increased by more than four degrees Celsius. Simulations confirm that meltwater reached nine meters depth at most. The refrozen meltwater was estimated at 0.23 meters water equivalent, amounting to 25 % of the total 2012 ablation. A surface energy balance model was used to evaluate the seasonal and interannual variability of all surface energy fluxes at that elevation in the years 2009 to 2013. Due to the meltwater presence at the surface in 2012, the summer-averaged albedo was significantly reduced (0.71 in 2012; typically 0.78). A sensitivity analysis revealed that 71 % of the subsequent additional solar radiation in 2012 was used for melt, corresponding to 36 % of the total 2012 surface lowering. This interplay between melt and firn properties highlights that the lower accumulation area of the Greenland ice sheet will be responding rapidly in a warming climate. / Stability and Variations of Arctic Land Ice (SVALI) / Programme for Monitoring of the Greenland Ice Sheet (PROMICE) / Greenland Analogue Project (GAP)
4

The Jormungand Climate Model

Rackauckas, Christopher V. 11 July 2013 (has links)
No description available.

Page generated in 0.038 seconds