• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Equivalence singulière à la Morita et la cohomologie de Hochschild singulière / Singular equivalence of Morita type and singular Hochschild cohomology

Wang, Zhengfang 07 December 2016 (has links)
L’objet de cette thèse est l’étude des catégories singulières des k-algèbres associatives surun anneau commutatif k. On développe la théorie de Morita pour les catégories singulières. Plus précisément, on propose une définition d’équivalence singulière à la Morita avec niveau, qui généralise la notion d’équivalence stable à la Morita introduite par Michel Broué. On montre qu’une équivalence dérivée de type standard induit une équivalence singulière à la Morita avec niveau. La deuxième partie de cette thèse est l’étude de la cohomologie de Hochschild singulière HH_sg(A,A) c’est-à-dire, l’espace des morphismes de A vers A[i] dans la catégorie singulière Dsg(A Aop) pour tous les nombres entiers i. Similaire à la cohomologie de Hochschild HH_(A,A), on montre que la cohomologie de Hochschild singulière HH_sg(A,A) est une algèbre de Gerstenhaber et donne une interprétation pour le crochet de Lie sur HH_sg(A,A) du point de vue de la théorie de PROP. On peut associer un complexe de cochaînes, qu’on appelle complexe de cochaînes de Hochschild singulières, C_sg(A,A) qui calcule la cohomologie de Hochschild singulière HH_sg(A,A). Alors on étudie une structure algébrique supérieure (e.g. l’algèbre de B1) sur C_sg(A,A) et propose une version singulière d’une conjecture de Deligne. L’objet de la troisième partie de cette thèse est de montrer que la structure d’algèbre de Gerstenhaber sur la cohomologie de Hochschild singulière est invariante par équivalences dérivées et équivalences singulières à la Morita avec niveau. L’idée de cette démonstration est analogue à l’approche développée par Keller lorsqu’il démontre que la structure d’algèbre de Gerstenhaber sur la cohomologie de Hochschild est invariante par équivalences dérivées. Similaire à la démonstration par Keller, on réalise HH_sg(A,A) avec le crochet de Lie comme une algèbre de Lie graduée du groupe algébrique gradué associé au groupe de Picard singulière sgDPic(A). / In this thesis, we are concerned with some aspects of singular categories of unitalassociative k-algebras over a commutative ring k. First, we develop a Morita theory for singular categories. Analogous to the classical Morita theory, we propose a definition of singular equivalence of Morita type with level. This follows and generalizes a definition of stable equivalence of Morita type introduced by Michel Broué. A derived equivalence of standard type induces a singular equivalence of Morita type with level. Second, we study the Hom-space from A to A[i] in the singular category Dsg(AkAop) of the enveloping algebra AkAop, where A is an associative k-projective k-algebra and i is any integer. Recall that the i-th Hochschild cohomology group HHi(A,A) can be realized as the Hom-space from A to A[i] in the bounded derived category Db(A k Aop). From this motivation, we call HomDsg(AkAop)(A,A[i]) the i-th singular Hochschild cohomology group and denote this group by HHi sg(A,A). Analogous to the Hochschild cohomology ring HH_(A,A), we prove that there is a Gerstenhaber algebra structure on the singular Hochschild ring HH_sg(A,A) and provide an interpretation of the Lie bracket from the point of view of PROP theory. We also associate a cochain complex, which we call singular Hochschild cochain complex, C_sg(A,A) to the singular Hochschild cohomology. Thenwe study the higher algebraic structures (e.g. B1-algebra) on C_sg(A,A) and propose asingular version of the Deligne conjecture. Following Keller’s approach which was developed for derived equivalences, we establish the invariance of the Gerstenhaber algebra structure which we defined on the singular Hochschild cohomology under singular equivalence of Morita type with level. In this proof, we define the singular derived Picard group sgDPic(A) of an associative algebra A and develop what we call a singular infinitesimal deformation theory. Then we realize HH_sg(A,A) as the graded Lie algebra of the ‘graded algebraic group’ associated to sgDPic(A).
2

Représentations et fusion des algèbres de Temperley-Lieb originale et diluée

Belletête, Jonathan 04 1900 (has links)
Les algèbres de Temperley-Lieb originales, aussi dites régulières, apparaissent dans de nombreux modèles statistiques sur réseau en deux dimensions: les modèles d'Ising, de Potts, des dimères, celui de Fortuin-Kasteleyn, etc. L'espace d'Hilbert de l'hamiltonien quantique correspondant à chacun de ces modèles est un module pour cette algèbre et la théorie de ses représentations peut être utilisée afin de faciliter la décomposition de l'espace en blocs; la diagonalisation de l'hamiltonien s'en trouve alors grandement simplifiée. L'algèbre de Temperley-Lieb diluée joue un rôle similaire pour des modèles statistiques dilués, par exemple un modèle sur réseau où certains sites peuvent être vides; ses représentations peuvent alors être utilisées pour simplifier l'analyse du modèle comme pour le cas original. Or ceci requiert une connaissance des modules de cette algèbre et de leur structure; un premier article donne une liste complète des modules projectifs indécomposables de l'algèbre diluée et un second les utilise afin de construire une liste complète de tous les modules indécomposables des algèbres originale et diluée. La structure des modules est décrite en termes de facteurs de composition et par leurs groupes d'homomorphismes. Le produit de fusion sur l'algèbre de Temperley-Lieb originale permet de «multiplier» ensemble deux modules sur cette algèbre pour en obtenir un autre. Il a été montré que ce produit pouvait servir dans la diagonalisation d'hamiltoniens et, selon certaines conjectures, il pourrait également être utilisé pour étudier le comportement de modèles sur réseaux dans la limite continue. Un troisième article construit une généralisation du produit de fusion pour les algèbres diluées, puis présente une méthode pour le calculer. Le produit de fusion est alors calculé pour les classes de modules indécomposables les plus communes pour les deux familles, originale et diluée, ce qui vient ajouter à la liste incomplète des produits de fusion déjà calculés par d'autres chercheurs pour la famille originale. Finalement, il s'avère que les algèbres de Temperley-Lieb peuvent être associées à une catégorie monoïdale tressée, dont la structure est compatible avec le produit de fusion décrit ci-dessus. Le quatrième article calcule explicitement ce tressage, d'abord sur la catégorie des algèbres, puis sur la catégorie des modules sur ces algèbres. Il montre également comment ce tressage permet d'obtenir des solutions aux équations de Yang-Baxter, qui peuvent alors être utilisées afin de construire des modèles intégrables sur réseaux. / The original Temperley-Lieb algebra, also called regular, appears in numerous integrable statistical models on two dimensional lattices: the Ising model, the Potts model, the dimers model, the Fortuin-Kasteleyn model, etc. The Hilbert space of the corresponding quantum hamiltonian is then a module over this algebra; its representation theory can be used to split this space in a direct sum of smaller spaces, and thus block diagonalize the corresponding quantum model. The dilute Temperley-Lieb algebra plays a similar role for dilute models, for instance those where lattice sites can be empty; its representation theory thus plays a similar role for these models. However, doing this requires a detailled knowledge of its modules and their structure; the first paper presents a complete list of the projective indecomposable modules for the dilute Temperley-Lieb algebra and a second constructs a complete set of indecomposable modules for both the regular and dilute algebras. In both articles the structure of the modules are exposed through their composition factors and homomorphism groups. The fusion product on the original Temperley-Lieb algebra defines how two modules can be «multiplied» together to obtain a module. It has been shown in some cases that this product can be used to simplify the block diagonalization of quantum hamiltonians, and some speculate that it could be used to determine the continuum limit of the models. A third paper defines a straightforward generalization of this product for the dilute algebra, then introduces an efficient way of computing it. It then calculates this product for the most common classes of indecomposable modules for both the original and dilute algebras; this fills a hole in the known fusion rules for the original algebra that were left out of previous calculations. Finally, it happens that the Temperley-Lieb algebras can be grouped together in a braided monoidal category, whose structure is compatible with the fusion product described above. The fourth article builds explicitly this braiding, both for the Temperley-Lieb category, and for its module category. It also shows how this braiding can be used to obtain solutions to the Yang-Baxter equation, which can then be used to build integrable lattice models.
3

Axiomatic approach to cellular algebras

Ahmadi, Amir 01 1900 (has links)
Les algèbres cellulaires furent introduite par J.J. Graham et G.I. Lehrer en 1996. Elles forment une famille d’algèbres associatives de dimension finie définies en termes de « données cellulaires » satisfaisant certains axiomes. Ces données cellulaires, lorsqu’elles sont identifiées pour une certaine algèbre, permettent une construction explicite de tous ses modules simples, à isomorphisme près, et de leurs couvertures projectives. Dans ce mémoire, nous définissons ces algèbres cellulaires en introduisant progressivement chacun des éléments constitutifs d’une façon axiomatique. Deux autres familles d’algèbres associatives sont discutées, à savoir les algèbres quasihéréditaires et celles dont les modules forment une catégorie de plus haut poids. Ces familles furent introduites durant la même période de temps, au tournant des années quatre-vingtdix. La relation entre ces deux familles ainsi que celle entre elles et les algèbres cellulaires sont prouvées. / Cellular algebras were introduced by J.J. Graham and G.I. Lehrer in 1996. They are a class of finite-dimensional associative algebras defined in terms of a “cellular datum” satisfying some axioms. This cellular datum, when made explicit for a given associative algebra, allows for the explicit construction of all its simple modules, up to isomorphism, and of their projective covers. In this work, we define these cellular algebras by introducing each building block of the cellular datum in a fairly axiomatic fashion. Two other families of associative algebras are discussed, namely the quasi-hereditary algebras and those whose modules form a highest weight category. These families were introduced at about the same period. The relationships between these two, and between them and the cellular ones, are made explicit.

Page generated in 0.0687 seconds