• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 744
  • 196
  • 122
  • 34
  • 34
  • 18
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • 11
  • Tagged with
  • 1538
  • 308
  • 160
  • 149
  • 133
  • 129
  • 124
  • 119
  • 107
  • 80
  • 78
  • 67
  • 63
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Biological Nitrogen Fixation in Two Southwestern Reservoirs

Lawley, Gary G. 08 1900 (has links)
This investigation has determined the presence of biological nitrogen fixation in two reservoirs in the southwestern United States: Lake Arlington and Lake Ray Hubbard. Subsequent tests have gathered baseline data on the effects of various biological, chemical, and physical parameters on in situ nitrogen fixation in these reservoirs. Of specific importance is the relationship between nitrogen fixation arid occasional blooms of blue-green algae which produce such problems as testes and odors in these water-supply impoundments.
272

Mass cultivation of chlorella species in sewage effluent and in artificial medium.

January 1979 (has links)
by Po-keung Wong. / Thesis (M.Phil.)--Chinese University of Hongkong. / Bibliography: leaves 265-298.
273

The ecology of chemical defence in a filamentous marine red alga

Paul, Nicholas Andrew, School of Biological, Earth & Environmental Sciences, UNSW January 2006 (has links)
I investigated the ecological functions of halogenated secondary metabolites from the red alga Asparagopsis armata, their localisation in specialised cells and also their cost of production. A. armata produces large amounts of halogenated metabolites ( &lt 20 ??g / mg dry weight) that are sequestered in gland cells, as was demonstrated with light, epifluorescence and transmission electron microscopy. Cellular structures were identified that likely assist the release of metabolites from the gland cells to the algal surface. The halogenated metabolites of A. armata have multiple ecological roles, functioning as both inhibitors of bacterial fouling and as herbivore deterrents. Their activity against bacteria and herbivores was measured by a novel test in which the metabolites were manipulated in A. armata by omitting bromide ions from the culture media. This technique prevented the production of halogenated metabolites, but did not impact on other aspects of algal biology. Algae lacking halogenated metabolites (bromide [-] algae) had higher densities of epiphytic bacteria than those that continued to produce metabolites (bromide [+] algae). Bioassays with pure compounds against individual bacterial isolates further supported an inhibitory role for the halogenated metabolites against epiphytic bacteria, and also indicated an affect on bacterial community structure as well as abundance. Bromide (+) A. armata produced halogenated metabolites that also deterred feeding by two herbivores (an amphipod and an abalone), but not a third (an opisthobranch mollusc). A novel outcome from these feeding assays was the demonstration of a relationship between herbivore size and consumption of the chemically defended A. armata by the abalone Haliotis rubra. In addition to the fitness benefits gained from chemical defence, there were also costs for allocating resources to secondary metabolites. These costs were only detected under limiting light resources, consistent with predictions of the plant defence models. The integration of chemical analyses and cellular measures of chemical defence proved essential in elucidating resource allocation to chemical defence in the filamentous stage of A. armata. This thesis highlights that the simple relationships between growth and defence in filamentous algae can provide an excellent model for studies of the ecology and evolution of chemical defences in marine algae.
274

Natural products from temperate and tropical marine algae

Graber, Melodie A. 29 May 1997 (has links)
Graduation date: 1998
275

Algal community structure and organization in high intertidal rockpools

van Tamelen, Peter G. 17 March 1992 (has links)
Gradients of physical disturbance are central to theories of community organization yet rarely are studies performed in which physical factors are experimentally manipulated. Pothole tidepool algal communities exhibit distinct zonation patterns from top to bottom that result from scouring by rocks and other debris in the pools. Scouring is easily manipulated by removing or adding rocks to tidepools. Thus, the gradient of physical disturbance potentially causing community patterns can be manipulated to test theories of community organization. I documented the distribution pattern of algae inhabiting pothole tidepools and measured a number of physical factors which were hypothesized to be responsible for the observed zonation patterns. Then, I experimentally evaluated the roles of physical disturbance, herbivory, and competition in these tidepool communities. I found that scouring by rocks was primarily responsible for the observed zonation patterns in pothole tidepools. However, not all pools are potholes. Evaluation of the physical properties effecting the cobble-retaining ability of tidepools enabled prediction over a broad geographic range of pools likely to have cobbles and thus show typical pothole algal zonation patterns. Coralline algae (Rhodophyta, Corallinaceae) are a dominant feature of tidepools as well as many low intertidal and subtidal habitats. I evaluated the relative resistance of coralline algae (both articulated and crustose forms) and other common tidepool algae to scouring by rocks. Coralline crusts were highly resistant to scouring while articulated coralline algae are very susceptible to scouring. Erect fleshy algal species showed intermediate resistance to scouring. This corresponds well to observed algal zonation patterns in intertidal potholes. Based on this information, I proposed that wave-induced scouring may have been the selective force for the initial incorporation of calcium carbonate into algal thalli. / Graduation date: 1992
276

Action Spectrum for Photoentrainment of the Circadian Clock in Wild-Type <i>Chlamydomonas reinhardtii</i>

Forbes=Stovall, Jennifer 01 August 2011 (has links)
The circadian clock is an endogenous timer that oscillates with a period of approximately 24 hours and is reset upon environmental time cues such as the daily light/ dark or temperature cycles. Chlamydomonas reinhardtii is an ideal model organism for research on the circadian clock, because it shows several well-characterized behaviors that exhibit a circadian rhythm. Its circadian rhythm of phototaxis (swimming toward light) has been automated. Former action spectrum studies using the circadian phototaxis rhythm as an indicator surprisingly found that pulses of blue light were not effective in resetting the circadian clock of dark-adapted cells. This may have been because of the particular strain used in the study (the cell wall-deficient strain CW15). It may also have been due to the additional phase shift caused by the act of placing the cultures into the monitoring machine at particular times during their circadian cycle. This additional phase shift was most likely the result of the white background light present when monitoring the rhythm of phototaxis. The phototaxis monitoring process was improved by using narrow-wavelength LEDs specific for phototaxis as test lights and by omitting the background light between test light cycles. This study demonstrates that the modifications prevent any phase shifts due to the cultures being placed into the monitoring machine. Using a further improved experimental set-up and the wild-type strain CC124, this study unambiguously shows that blue light of 440nm is effective in resetting the circadian clock in Chlamydomonas reinhardtii. Because of this difference in blue light response to the earlier study, the action spectrum of the entire visible light range was also evaluated. Effective wavelengths for resetting the circadian clock in wild-type C. reinhardtii were found to occur at 400nm, 440nm, 540nm, and 640-660nm, corresponding to near UV-A, blue, green, and red light, respectively. With the exception of 440nm, these findings are congruent with previous action spectrum studies for the cell wall-deficient strain CW15.
277

Potential chemical defenses against diatom fouling in macroalgae from the Antarctic Peninsula insights from bioassay guided fractionation /

Sevak, Hamel P. January 2010 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2010. / Title from PDF title page (viewed Jan. 21, 2010). Includes bibliographical references (p. 32-40) .
278

Comparative studies of the periphytic diatoms in Plover Cove.

Tai, Yuk-chun. January 1972 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1973. / Typewritten.
279

An integrated resource and biological growth model for estimating algal biomass production with geographic resolution

Wogan, David Michael 16 February 2011 (has links)
This thesis describes a geographically- and temporally-resolved, integrated biological and engineering model that estimates algal biomass and lipid production under resource-limited conditions with hourly and county resolution. Four primary resources are considered in this model: sunlight, carbon dioxide, water, and land. The variation in quantity and distribution of these resources affects algae growth, and is integrated into the analysis using a Monod model of algae growth, solar insolation data, and published values for water, carbon dioxide, and land availability. Finally, lipid production is calculated by assuming oil content based on dry weight of the biomass. The model accommodates a range of growth and production scenarios, including water recycling, co-location with wastewater treatment plants and coal-fired generators, and photobioreactor type (open pond or tubular), among others. Results for every county in Texas indicate that between 86 million and 2.2 billion gallons of lipids per year can be produced statewide for the various growth scenarios. The analysis suggests that algal biomass and lipid production does indeed vary geographically and temporally across Texas. Overall, most counties are water-limited for algae production, not sunlight or carbon dioxide-limited. However, there are many nuances in biomass and lipid production by county. Counties in west Texas are typically not solar- or land-limited, but are constrained by either water or carbon dioxide resources. Consequently, counties in east Texas are limited by either water, or land (depending on the fraction of water recycling). Varying carbon dioxide concentration results in higher growth rates, but not always increased biomass and lipid production because of limitations of other resources in each county. / text
280

Mechanistic evaluation of red algal extracts that slow aging

Snare, David Joseph 20 September 2013 (has links)
Aging results from an accumulation of damage to macromolecules inhibiting cellular replication, repair, and other necessary functions. Damage may be due to environmental stressors such as metal toxicity, oxidative stress caused by imperfections in electron transfer reactions, or other metabolic processes. In an effort to discover medical treatments that counteract this damage, we have initiated a program to search for small molecule drugs from natural sources. We have identified marine red algae as a source of natural products that slow aging of the invertebrate rotifer Brachionus manjavacas. Rotifers are a promising model organism for life extension studies as they maintain a short, measurable lifespan while also having an accepted literature precedent related to aging. Rotifer lifespan was increased 9-14% by exposure to three of 200 screened red algal extracts. Bioassay guided fractionation led to semi-purified extracts composed primarily of lipids responsible for rotifer life extension. The life extending effects of these small molecule mixtures are not a result of their antioxidant capacity; instead they may activate pathways that slow the accumulation of cellular damage. An understanding of how these natural products interact with their molecular targets could lead to selective and efficient treatments for slowing aging and reducing age related diseases.

Page generated in 0.0538 seconds