• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The regulator, the Bloch group, hyperbolic manifolds, and the #eta#-invariant

Cisneros-Molina, Jose Luis January 1999 (has links)
No description available.
2

Noncommutative spin geometry /

Rennie, Adam Charles. January 2001 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, Dept. of Pure Mathematics, 2001. / Bibliography: p. 155-161.
3

An Explicit Formula for the Loday Assembly

Virgil Chan (8740848) 24 April 2020 (has links)
We give an explicit description of the Loday assembly map on homotopy groups when restricted to a subgroup coming from the Atiyah-Hirzebruch spectral sequence. This proves and generalises a formula about the Loday assembly map on the first homotopy group that originally appeared in work of Waldhausen. Furthermore, we show that the Loday assembly map is injective on the second homotopy groups for a large class of integral group rings. Finally, we show that our methods can be used to compute the universal assembly map on homotopy.
4

Zur Injektivität eines durch die Normresteabbildung induzierten Homomorphismus

Cremer, Felix 20 October 2017 (has links)
Die Arbeit schließt eine Lücke im Preprint 'On the spinor norm and A_0(X, K_1) for quadrics' von Markus Rost. Die Ergebnisse von Rost wurden von Vladimir Voevodsky beim Beweis der Milnor-Vermutung benutzt.
5

Regulador de Borel na K-teoria algébrica / Borel regulator in algebraic k-theory

Valerio, Piere Alexander Rodriguez 21 November 2018 (has links)
Neste trabalho,nos apresentamos a K-teoria algébrica a qual é um ramo da álgebra que associa para cada anel comutativo comunidade R, uma sequencia de grupos abelianos ditos de n-ésimos K-grupos do anel R, denotada por Kn(R) . A meados da década de 1950,Alexander Grothendieck da a definição do K0(R) de um anel R. Em 1962, Hyman Bass e Stephen Schanuel apresenta a primeira definição adequada do K1(R) de um anel R. Em 1970, Daniel Quillen da uma definição geral dos K-grupos de um anel R a partir da +- construção do espaço classificante BGL(R). Nosso interesse é o estudo dos K-grupos sobre o anel de inteiros OF sobre um corpo numérico F. Usando alguns resultados de homologia dos grupos lineares, neste trabalho daremos a definição do mapa regulador de Borel. / In this paper,we present the algebraic K-theory,which is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R, denoted by Kn(R). The mid-1950s, Alexander Grothendieck gave a definition of the K0(R) of any ring R. In1962, Hyman Bass and Stephen Schanuel gave the first adequate definition of K1 of any ring R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +- construction of the classifying space BGL(R). Our interest is the study of the K-groups on the ring of integers OF over a number field F. Using some results of homology of linear groups, this work will give the definition of Borel\'s regulator map.
6

Regulador de Borel na K-teoria algébrica / Borel regulator in algebraic k-theory

Piere Alexander Rodriguez Valerio 21 November 2018 (has links)
Neste trabalho,nos apresentamos a K-teoria algébrica a qual é um ramo da álgebra que associa para cada anel comutativo comunidade R, uma sequencia de grupos abelianos ditos de n-ésimos K-grupos do anel R, denotada por Kn(R) . A meados da década de 1950,Alexander Grothendieck da a definição do K0(R) de um anel R. Em 1962, Hyman Bass e Stephen Schanuel apresenta a primeira definição adequada do K1(R) de um anel R. Em 1970, Daniel Quillen da uma definição geral dos K-grupos de um anel R a partir da +- construção do espaço classificante BGL(R). Nosso interesse é o estudo dos K-grupos sobre o anel de inteiros OF sobre um corpo numérico F. Usando alguns resultados de homologia dos grupos lineares, neste trabalho daremos a definição do mapa regulador de Borel. / In this paper,we present the algebraic K-theory,which is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R, denoted by Kn(R). The mid-1950s, Alexander Grothendieck gave a definition of the K0(R) of any ring R. In1962, Hyman Bass and Stephen Schanuel gave the first adequate definition of K1 of any ring R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +- construction of the classifying space BGL(R). Our interest is the study of the K-groups on the ring of integers OF over a number field F. Using some results of homology of linear groups, this work will give the definition of Borel\'s regulator map.
7

Invariants topologiques des espaces non-commutatifs. / Topological invariants of non-commutative spaces.

Blanc, Anthony 05 July 2013 (has links)
Dans cette thèse, on donne une définition de la K-théorie topologique des espaces non-commutatifs de Kontsevich (c'est-à-dire des dg-catégories) définis sur les nombres complexes. L'introduction de ce nouvel invariant initie la recherche des invariants de nature topologique des espaces non-commutatifs, comme "simplifications" des invariants algébriques (K-théorie algébrique, homologie cyclique, périodique comme étudiés dans les travaux de Tsygan, Keller). La motivation principale vient de la théorie de Hodge non-commutative au sens de Katzarkov--Kontsevich--Pantev. En géométrie algébrique, la partie rationnelle de la structure de Hodge est donnée par la cohomologie de Betti rationnelle, qui est la cohomologie rationnelle de l'espace des points complexes du schéma. La recherche d'un espace associé à une dg-catégorie trouve une première réponse avec le champ (défini par Toën--Vaquié) classifiant les dg-modules parfaits sur cette dg-catégorie. La définition de la K-théorie topologique a pour ingrédient essentiel le foncteur de réalisation topologique des préfaisceaux en spectres sur le site des schémas de type fini sur les complexes. La partie connective de la K-théorie semi-topologique peut être définie comme la réalisation topologique du champ en monoïdes commutatifs des dg-modules parfaits. Cependant pour atteindre la K-théorie négative, on réalise le préfaisceau donné par la K-théorie algébrique non-connective. Un de nos résultats principaux énonce l'existence d'une équivalence naturelle entre ces deux définitions dans le cas connectif. On montre que la réalisation topologique du préfaisceau de K-théorie algébrique connective pour la dg-catégorie unité donne le spectre de K-théorie topologique usuel. Puis que c'est aussi vrai pour la K-théorie algébrique non-connective, en utilisant la propriété de restriction aux lisses de la réalisation topologique. En outre, cette propriété de restriction aux schémas lisses nécessite de montrer une généralisation de la descente propre cohomologique de Deligne, dans le cadre homotopique non-abélien.La K-théorie topologique est alors définie en localisant par rapport à l'élément de Bott. Cette définition repose donc sur des résultats non-triviaux. On montre alors que le caractère de Chern de la K-théorie algébrique vers l'homologie périodique se factorise par la K-théorie topologique, donnant un candidat naturel pour la partie rationnelle d'une structure de Hodge non-commutative sur l'homologie périodique, ceci étant énoncé sous la forme de la conjecture du réseau. Notre premier résultat de comparaison concerne le cas d'un schéma lisse de type fini sur les complexes -- la conjecture du réseau est alors vraie pour de tels schémas. On montre ensuite que cette conjecture est vraie dans le cas des algèbres associatives de dimension finie. / In this thesis, we give a definition of a topological K-theory of Kontsevich's non-commutative spaces (i.e. of dg-categories) defined over complex numbers. The introduction of this invariant initiates the quest for topological invariants of non-commutative spaces, which are considered as "simplifications" of algebraic ones like algebraic K-theory, cyclic homology, periodic homology as studied by Tsygan, Keller. The main motivation comes from non-commutative Hodge theory in the sense of Katzarkov--Kontsevich--Pantev. In algebraic geometry, the rational part of the Hodge structure is given by rational Betti cohomology, which is the rational cohomology of the underlying space of complex points. The existence of a space associated to a dg-category admits a first answer given by the stack (defined by Toën--Vaquié) classifying perfect dg-modules over this dg-category. The essential ingredient in the definition of the topological K-theory is the topological realization functor of spectral presheaves on the site of complex schemes of finite type. The connective part of the semi-topological K-theory can then be definied as the topological realization of the stack of perfect dg-modules over the space, together with its commutative monoid structure up to homotopy. But to deal with negative K-groups, we realize the presehaf given by non-connective algebraic K-theory. One of our main results relies the two previous definition in the connective case. We show that the topological realization of the presheaf of connective algebraic K-theory for the unit dg-category is equivalent to the usual topological K-theory spectrum. We show this is also true in the non-connective case, using a property of restriction to smooth schemes. This last property leads us to show a generalization of Deligne's proper cohomological descent to the homotopical non-abelian setting. This enables us to define topological K-theory by inverting the Bott element. We point out that the process of the definition involves non-trivial results. We then show that the Chern character from algebraic K-theory to periodic homology factorizes through topological K-theory, giving a natural candidate for the rational part of a non-commutative Hodge structure on the periodic homology of a smooth and proper dg-category. This last claim is written in the form of a conjecture : the lattice conjecture. Our first comparison result deals with the case of a smooth scheme of finite type over complex numbers -- we show the lattice conjecture holds for dg-categories of perfect complexes. We also show this conjecture is true in the case of finite dimensional associative algebras.
8

Sequência exata de Bloch-Wigner e K-teoria algébrica / The Bloch-Wigner exact sequence and algebraic K-theory

Ordinola, David Martín Carbajal 14 September 2016 (has links)
A K-teoria algébrica é um ramo da álgebra que associa para cada anel com unidade R, uma sequência de grupos abelianos chamados os n-ésimos K-grupos de R. Em 1970, Daniel Quillen dá uma definição geral dos K-grupos de um anel qualquer R a partir da +-construção do espaço classificante BGL(R). Por outro lado, considerando R um anel comutativo, obtém-se também a definição dos K-grupos de Milnor KMn (R). Usando o produto dos K-grupos de Quillen e Milnor e suas estruturas anti-comutativas, definimos o seguinte homomorfismo tn : KMn (R) &rarr; Kn(R): Mostraremos nesta dissertação que se R é um anel local com ideal maximal m tal que R / m é um corpo infinito, então esse homomorfismo é um isomorfismo para 0 &le; n &le; 2. Em geral tn nem sempre é injetor ou sobrejetor. Por exemplo quando n = 3, sabe-se que t3 não é sobrejetor e definimos a parte indecomponível de K3(R) como sendo o grupo Kind3 (R) := coker (KM3 (R) &rarr; t3 K3(R)). Usando alguns resultados de homologia dos grupos lineares, nesta dissertação mostraremos a existência da sequência exata de Bloch-Wigner para corpos infinitos. Esta sequência dá uma descrição explícita da parte indecomponível do terceiro K-grupo de um corpo infinito. TEOREMA (Sequência exata de Bloch-Wigner). Seja F um corpo infinito e seja p(F) o grupo de pre-Bloch de F, isto é, o grupo quociente do grupo abeliano livre gerado pelos símbolos [a], a &isin; F×, pelo subgrupo gerado por elementos da forma [a] - [b] + [b/a] - [1-a-1 /1-b-1] + [1-a /1-b] com a, b &isin; F× - {1}, a /= b. Então temos a sequência exata TorZ1 (&mu; (F), &mu; (F)) ~ &rarr; Kind3 (F) &rarr; p(F) &rarr; (F× &#8855; ZFx)&sigma; F×)&sigma; &rarr; K2(F) &rarr; 0 onde (F× &#8855; ZF×)&sigma; := (F×; &#8855; ZF×)/<a &#8855; b + b &#8855; a | a, b &isin; F×> e TorZ1 (&mu; (F); &mu; (F)) ~ é a única extensão não trivial de Z=2Z por TorZ1 (&mu; (F); &mu; (F)) se char(F) &ne; 2 e &mu; 2 &infin; (F) é finito e é TorZ1 (&mu; (F); &mu; (F)) caso contrário. O homomorfismo p(F) &rarr; (F× &#8855; ZF×) &sigma; é definido por [a] &rarr; a &#8855; (1-a). O estudo da sequência exata de Bloch-Wigner é justificada pela relação entre o segundo e terceiro K-grupo de um corpo F. / The algebraic K-theory is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +-construction of the classifying space BGL(R). On the other hand, if we consider a commutative ring R, we can define the Milnors K-groups, KMn (R), of R. Using the product of the Quillen and Milnors K-groups and their anti-commutative structure, we define a natural homomorphism tn : KMn (R) &rarr; Kn(R): In this dissertation, we show that if R is a local ring with maximal ideal m such that R=m is infinite, then this map is an isomorphism for 0<= n<= 2. But in general tn is not injective nor is surjective. For example when n = 3, we know that t3 is not surjective and define the indecomposable part of K3(R) as the group Kind3 (R) := coker (KM3 (R) &rarr; t3 K3(R)). Using some results about the homology of linear groups, in this dissertation we will prove the Bloch-Wigner exact sequence over infinite fields. This exact sequence gives us a precise description of the indecomposable part of the third K-group of an infinite field. THEOREM (Bloch-Wigner exact sequence). Let F be an infinite field and let p(F) be the pre-Bloch group of F, that is, the quotient group of the free abelian group generated by symbols [a], a &isin; F× - [1}, by the subgroup generated by the elements of the form [a][b]+ b/a][ 1-a-1/1-b-1]+ [1-a/1-b] with a; b &isin; F×, a =/ b. Then we have the exact sequence TorZ1 (&mu; (F), &mu; (F)) ~ &rarr; Kind3 (F) &rarr; p(F) &rarr; (F× &#8855; ZF×)$sigma; &rarr; K2(F) &rarr; 0 where (F× &#8855; ZF×)&sigma; := (F× &#8855; ZF×) / a &38855; b +b &#8855; a | a; b &isin; F× and TorZ1(&mu;(F);&mu;(F)) is the unique non trivial extension of Z=2Z by TorZ1 (&mu; (F); &mu; (F)) if char(F) =/ 2 and &mu;2 &infin; is finite and is TorZ1 (&mu; (F);&mu; (F)) otherwise. The homomorphism p(F) &rarr; (F×ZF×)%sigma; is defined by [a] &rarr; a &#8855; (1-a). As it is shown, the study of the Bloch-Wigner exact sequence is also justified by the relation between the second and third K-group of a field F.
9

Sequência exata de Bloch-Wigner e K-teoria algébrica / The Bloch-Wigner exact sequence and algebraic K-theory

David Martín Carbajal Ordinola 14 September 2016 (has links)
A K-teoria algébrica é um ramo da álgebra que associa para cada anel com unidade R, uma sequência de grupos abelianos chamados os n-ésimos K-grupos de R. Em 1970, Daniel Quillen dá uma definição geral dos K-grupos de um anel qualquer R a partir da +-construção do espaço classificante BGL(R). Por outro lado, considerando R um anel comutativo, obtém-se também a definição dos K-grupos de Milnor KMn (R). Usando o produto dos K-grupos de Quillen e Milnor e suas estruturas anti-comutativas, definimos o seguinte homomorfismo tn : KMn (R) &rarr; Kn(R): Mostraremos nesta dissertação que se R é um anel local com ideal maximal m tal que R / m é um corpo infinito, então esse homomorfismo é um isomorfismo para 0 &le; n &le; 2. Em geral tn nem sempre é injetor ou sobrejetor. Por exemplo quando n = 3, sabe-se que t3 não é sobrejetor e definimos a parte indecomponível de K3(R) como sendo o grupo Kind3 (R) := coker (KM3 (R) &rarr; t3 K3(R)). Usando alguns resultados de homologia dos grupos lineares, nesta dissertação mostraremos a existência da sequência exata de Bloch-Wigner para corpos infinitos. Esta sequência dá uma descrição explícita da parte indecomponível do terceiro K-grupo de um corpo infinito. TEOREMA (Sequência exata de Bloch-Wigner). Seja F um corpo infinito e seja p(F) o grupo de pre-Bloch de F, isto é, o grupo quociente do grupo abeliano livre gerado pelos símbolos [a], a &isin; F×, pelo subgrupo gerado por elementos da forma [a] - [b] + [b/a] - [1-a-1 /1-b-1] + [1-a /1-b] com a, b &isin; F× - {1}, a /= b. Então temos a sequência exata TorZ1 (&mu; (F), &mu; (F)) ~ &rarr; Kind3 (F) &rarr; p(F) &rarr; (F× &#8855; ZFx)&sigma; F×)&sigma; &rarr; K2(F) &rarr; 0 onde (F× &#8855; ZF×)&sigma; := (F×; &#8855; ZF×)/<a &#8855; b + b &#8855; a | a, b &isin; F×> e TorZ1 (&mu; (F); &mu; (F)) ~ é a única extensão não trivial de Z=2Z por TorZ1 (&mu; (F); &mu; (F)) se char(F) &ne; 2 e &mu; 2 &infin; (F) é finito e é TorZ1 (&mu; (F); &mu; (F)) caso contrário. O homomorfismo p(F) &rarr; (F× &#8855; ZF×) &sigma; é definido por [a] &rarr; a &#8855; (1-a). O estudo da sequência exata de Bloch-Wigner é justificada pela relação entre o segundo e terceiro K-grupo de um corpo F. / The algebraic K-theory is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +-construction of the classifying space BGL(R). On the other hand, if we consider a commutative ring R, we can define the Milnors K-groups, KMn (R), of R. Using the product of the Quillen and Milnors K-groups and their anti-commutative structure, we define a natural homomorphism tn : KMn (R) &rarr; Kn(R): In this dissertation, we show that if R is a local ring with maximal ideal m such that R=m is infinite, then this map is an isomorphism for 0<= n<= 2. But in general tn is not injective nor is surjective. For example when n = 3, we know that t3 is not surjective and define the indecomposable part of K3(R) as the group Kind3 (R) := coker (KM3 (R) &rarr; t3 K3(R)). Using some results about the homology of linear groups, in this dissertation we will prove the Bloch-Wigner exact sequence over infinite fields. This exact sequence gives us a precise description of the indecomposable part of the third K-group of an infinite field. THEOREM (Bloch-Wigner exact sequence). Let F be an infinite field and let p(F) be the pre-Bloch group of F, that is, the quotient group of the free abelian group generated by symbols [a], a &isin; F× - [1}, by the subgroup generated by the elements of the form [a][b]+ b/a][ 1-a-1/1-b-1]+ [1-a/1-b] with a; b &isin; F×, a =/ b. Then we have the exact sequence TorZ1 (&mu; (F), &mu; (F)) ~ &rarr; Kind3 (F) &rarr; p(F) &rarr; (F× &#8855; ZF×)$sigma; &rarr; K2(F) &rarr; 0 where (F× &#8855; ZF×)&sigma; := (F× &#8855; ZF×) / a &38855; b +b &#8855; a | a; b &isin; F× and TorZ1(&mu;(F);&mu;(F)) is the unique non trivial extension of Z=2Z by TorZ1 (&mu; (F); &mu; (F)) if char(F) =/ 2 and &mu;2 &infin; is finite and is TorZ1 (&mu; (F);&mu; (F)) otherwise. The homomorphism p(F) &rarr; (F×ZF×)%sigma; is defined by [a] &rarr; a &#8855; (1-a). As it is shown, the study of the Bloch-Wigner exact sequence is also justified by the relation between the second and third K-group of a field F.

Page generated in 0.0435 seconds