• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preservation theorems for algebraic and relational models of logic

Morton, Wilmari 30 July 2013 (has links)
A thesis submitted to the School of Computer Science, Faculty of Science, University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 15 May 2013 / In this thesis a number of different constructions on ordered algebraic structures are studied. In particular, two types of constructions are considered: completions and finite embeddability property constructions. A main theme of this thesis is to determine, for each construction under consideration, whether or not a class of ordered algebraic structures is closed under the construction. Another main focus of this thesis is, for a particular construction, to give a syntactical description of properties preserved by the construction. A property is said to be preserved by a construction if, whenever an ordered algebraic structure satisfies it, then the structure obtained through the construction also satisfies the property. The first four constructions investigated in this thesis are types of completions. A completion of an ordered algebraic structure consists of a completely lattice ordered algebraic structure and an embedding that embeds the former into the latter. Firstly, different types of filters (dually, ideals) of partially ordered sets are investigated. These are then used to form the filter (dually, ideal) completions of partially ordered sets. The other completions of ordered algebraic structures studied here include the MacNeille completion, the canonical extension (also called the completion with respect to a polarization) and finally a prime filter completion. A class of algebras has the finite embeddability property if every finite partial subalgebra of some algebra in the class can be embedded into some finite algebra in the class. Firstly, two constructions that establish the finite embeddability property for residuated ordered structures are investigated. Both of these constructions are based on completion constructions: the first on the Mac- Neille completion and the second on the canonical extension. Finally, algebraic filtrations on modal algebras are considered and a duality between algebraic and relational versions of filtrations is established.
2

Computability over abstract data types

Byers, Patrick January 1990 (has links)
This thesis extends the study of the notion of termination equivalence of abstract structures first proposed by Kfoury. The connection with abstract data types (ADTs) is made by demonstrating that many kinds of equivalence between ADT implementations are in fact instances of termination equivalence between their underlying algebras. The results in the thesis extend the original work in two directions. The first is to consider how the termination equivalence of structures is dependent upon the choice of programming formalism. The termination equivalences for all of the common classes of programs and for some new classes of non-computable schemes are studied, and their relative strengths are established. The other direction is a study of a congruence property of equivalences relative to the join or addition datatype building operation. We decide which of the termination equivalences are congruences for all structures and for all computable structures, and for those equivalences which are not, we characterise those congruences closest to them (both stronger and weaker). These programmes of work involved the use of constructions and properties of structures relating to program termination which are of interest in themselves. These are examined and are used to prove some general results about the relative strengths of termination equivalences.
3

Cobordism categories

Carmody, Sean Michael January 1995 (has links)
No description available.
4

Hall algebras and Green rings

Archer, Louise January 2005 (has links)
This thesis consists of two parts, both of which involve the study of algebraic structures constructed via the multiplication of modules. In the first part we look at Hall algebras. We consider the Hall algebra of a cyclic quiver algebra with relations of length two and present a multiplication formula for the explicit calculation of products in this algebra. We then look at the case of a cyclic quiver with two vertices and describe the corresponding composition algebra as a quotient of the positive part of a quantised enveloping algebra of type Ã<sub>1</sub> We then look at quotients of Hall algebras of self-injective algebras. We give an abstract result describing the quotient of such a Hall algebra by the ideal generated by isomorphism classes of projective modules, and also a more explicit result describing quotients of Hall algebras of group algebras for cyclic 2-groups and some related polynomial algebras. The second part of the thesis deals with Green rings. We compare the Green rings of a group algebra and the corresponding Jennings algebra for certain p-groups. It is shown that these two Green rings are isomorphic in the case of a cyclic p-group. In the case of the Klein four group it is shown that the two Green rings are not isomorphic, but that there exist quotients of these rings which are isomorphic. It is conjectured that the corresponding quotients will also be isomorphic in the case of a dihedral 2-group. The properties of these quotients are studied, with the aim of producing evidence to support this conjecture. The work on Green rings also includes some results on the realisation of quotients of Green rings as group rings over ℤ.
5

On yosida frames and related frames

Matabane, Mogalatjane Edward January 2012 (has links)
Thesis (MA. (Mathematics)) -- University of Limpopo, 2012 / Topological structures called Yosida frames and related algebraic frames are studied in the realm of Pointfree Topology. It is shown that in algebraic frames regular elements are those for which compact elements are rather below the regular elements, and algebraic frames are regular if and only if every compact element is rather below itself if and only if the frame has the Finite Intersection Property (FIP) and each prime element is minimal. We also show that Yosida frames are those algebraic frames with the Finite Intersection Property and are finitely subfit; that these frames are also those semi-simple algebraic frames with FIP and a disjointification where dim (L)≤ 1; and we prove that in an algebraic frame with FIP, it holds that dom (L) = dim (L). In relation to normality in Yosida frames, we show that in a coherent normal Yosida frame L, the frame is subfit if and only if it is regular if and only if it is zero- dimensional if and only if every compact element is complemented.
6

Extensions of quandles and cocycle knot invariants [electronic resource] / by Marina Appiou Nikiforou.

Appiou Nikiforou, Marina. January 2002 (has links)
Includes vita. / Title from PDF of title page. / Document formatted into pages; contains 81 pages / Thesis (Ph.D.)--University of South Florida, 2002. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: Knot theory has rapidly expanded in recent years. New representations of braid groups led to an extremely powerful polynomial invariant, the Jones polynomial. Combinatorics applied to knot and link diagrams led to generalizations. Knot theory also has connections with other fields such as statistical mechanics and quantum field theory, and has applications in determining how certain enzymes act on DNA molecules, for example. The principal objective of this dissertation is to study the relations between knots and algebraic structures called quandles. A quandle is a set with a binary operation satisfying some properties related to the three Reidemeister moves. The study of quandles in relation to knot theory was intitiated by Joyce and Matveev. Later, racks and their (co)homology theory were defined by Fenn and Rourke. The rack (co)homology was also studied by Grana from the viewpoint of Hopf algebras. / ABSTRACT: Furthermore, a modified definition of homology theory for quandles was introduced by Carter, Jelsovsky, Kamada, Langford, and Saito to define state-sum invariants for knots and knotted surfaces, called quandle cocycle invariants. This dissertation studies the quandle cocycle invariants using extensions of quandles and knot colorings. We obtain a coloring of a knot by assigning elements of a quandle to the arcs of the knot diagram. Such colorings are used to define knot invariants by state-sum. For a given coloring, a 2-cocycle is assigned at each crossing as the Boltzmann weight. The product of the weights over all crossings is the contribution to the state-sum, which is the formal summation of the contributions over all possible colorings of the given knot diagram by a given quandle. Generalizing the cocycle invariant for knots to links, we define two kinds of invariants for links: a component-wise invariant, and an invariant defined as families of vectors. / ABSTRACT: Abelian extensions of quandles are also defined and studied. We give a formula for creating infinite families of abelian extensions of Alexander quandles. These extensions give rise to explicit formulas for computing 2-cocycles. The theory of quandle extensions parallels that of groups. Moreover, we investigate the notion of extending colorings of knots using quandle extensions. In particular, we show how the obstruction to extending the coloring contributes to the non-trivial terms of the cocycle invariants for knots and links. Moreover, we demonstrate the relation between these new cocycle invariants and Alexander matrices. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
7

Coherence for categorified operadic theories

Gould, Miles. January 2008 (has links)
Thesis (Ph.D.) - University of Glasgow, 2008. / Ph.D. thesis submitted to the Faculty of Information and Mathematical Sciences, Department of Mathematics, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
8

Quantum Toroidal Superalgebras

Luan Pereira Bezerra (8766687) 30 April 2020 (has links)
<div> We introduce the quantum toroidal superalgebra E<sub>m|n </sub>associated with the Lie superalgebra gl<sub>m|n</sub> and initiate its study. For each choice of parity "s" of gl<sub>m|n</sub>, a corresponding quantum toroidal superalgebra E<sub>s</sub> is defined. </div><div> </div><div><br></div><div>To show that all such superalgebras are isomorphic, an action of the toroidal braid group is constructed. </div><div><br></div><div>The superalgebra E<sub>s</sub> contains two distinguished subalgebras, both isomorphic to the quantum affine superalgebra U<sub>q</sub> sl̂<sub>m|n</sub> with parity "s", called vertical and horizontal subalgebras. We show the existence of Miki automorphism of E<sub>s</sub>, which exchanges the vertical and horizontal subalgebras.</div><div><br></div><div>If <i>m</i> and <i>n</i> are different and "s" is standard, we give a construction of level 1 E<sub>m|n</sub>-modules through vertex operators. We also construct an evaluation map from E<sub>m|n</sub>(q<sub>1</sub>,q<sub>2</sub>,q<sub>3</sub>) to the quantum affine algebra U<sub>q</sub> gl̂<sub>m|n</sub> at level c=q<sub>3</sub><sup>(m-n)/2</sup>.</div>
9

Extensions of Quandles and Cocycle Knot Invariants

Appiou Nikiforou, Marina 06 December 2002 (has links)
Knot theory has rapidly expanded in recent years. New representations of braid groups led to an extremely powerful polynomial invariant, the Jones polynomial. Combinatorics applied to knot and link diagrams led to generalizations. Knot theory also has connections with other fields such as statistical mechanics and quantum field theory, and has applications in determining how certain enzymes act on DNA molecules, for example. The principal objective of this dissertation is to study the relations between knots and algebraic structures called quandles. A quandle is a set with a binary operation satisfying some properties related to the three Reidemeister moves. The study of quandles in relation to knot theory was intitiated by Joyce and Matveev. Later, racks and their (co)homology theory were defined by Fenn and Rourke. The rack (co)homology was also studied by Grana from the viewpoint of Hopf algebras. Furthermore, a modified definition of homology theory for quandles was introduced by Carter, Jelsovsky, Kamada, Langford, and Saito to define state-sum invariants for knots and knotted surfaces, called quandle cocycle invariants. This dissertation studies the quandle cocycle invariants using extensions of quandles and knot colorings. We obtain a coloring of a knot by assigning elements of a quandle to the arcs of the knot diagram. Such colorings are used to define knot invariants by state-sum. For a given coloring, a 2-cocycle is assigned at each crossing as the Boltzmann weight. The product of the weights over all crossings is the contribution to the state-sum, which is the formal summation of the contributions over all possible colorings of the given knot diagram by a given quandle. Generalizing the cocycle invariant for knots to links, we define two kinds of invariants for links: a component-wise invariant, and an invariant defined as families of vectors. Abelian extensions of quandles are also defined and studied. We give a formula for creating infinite families of abelian extensions of Alexander quandles. These extensions give rise to explicit formulas for computing 2-cocycles. The theory of quandle extensions parallels that of groups. Moreover, we investigate the notion of extending colorings of knots using quandle extensions. In particular, we show how the obstruction to extending the coloring contributes to the non-trivial terms of the cocycle invariants for knots and links. Moreover, we demonstrate the relation between these new cocycle invariants and Alexander matrices.
10

Algebraic Structures on the Set of all Binary Operations over a Fixed Set

Owusu-Mensah, Isaac 02 June 2020 (has links)
No description available.

Page generated in 0.0617 seconds