• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extensões cindidas por ideais nilpotentes / split-by-nilpotent extension

Wagner, Heily 18 April 2008 (has links)
Consideremos A e B duas álgebras de Artin tais que é uma extensão cindida de A pelo ideal Q, onde é um ideal nilpotente de B. Estudamos algumas propriedades homológicas das categorias modA e modB, tais como dimensão projetiva e injetiva. A partir disso mostramos que se B pertence a uma das seguintes classes: hereditária, laura, fracamente shod, shod, quase inclinada, colada à esquerda, colada à direita ou disfarçada; então A pertence a mesma classe. Além disso, restringindo nosso estudo para álgebras de dimensão finita sobre um corpo algebricamente fechado, comparamos as respectivas aljavas ordinárias, bem como suas apresentações. Finalmente, após caracterizarmos o ideal Q, exibimos alguns exemplos de extensões no contexto de álgebras de caminhos com relações, que mostram que A pode ser de uma das classes citadas sem que B o seja / Let A and B be two Artin algebras such that B is a split-by-nilpotent extension of A by Q, were Q is a nilpotent ideal of B. We study some homological properties of the categories mod A and mod B such that the projetive and the injetive dimensions of their objects. Using this we show that if B belongs to one of this classes: hereditary, laura, weakly shod, shod, quasi-tilted, left glued, right glued or concealed; then A belongs to same class. Moreover restricting our study to finite dimensional algebras over algebraically closed fields, we compare the ordinary quivers and presentations of the corresponding algebras. Finally, after giving a characterization of ideal Q as above, we exhibit some exemples of split extensions in the context of path algebras bounded by relations, which shows that A can be one of the above cited algebras without B so
2

Extensões cindidas por ideais nilpotentes / split-by-nilpotent extension

Heily Wagner 18 April 2008 (has links)
Consideremos A e B duas álgebras de Artin tais que é uma extensão cindida de A pelo ideal Q, onde é um ideal nilpotente de B. Estudamos algumas propriedades homológicas das categorias modA e modB, tais como dimensão projetiva e injetiva. A partir disso mostramos que se B pertence a uma das seguintes classes: hereditária, laura, fracamente shod, shod, quase inclinada, colada à esquerda, colada à direita ou disfarçada; então A pertence a mesma classe. Além disso, restringindo nosso estudo para álgebras de dimensão finita sobre um corpo algebricamente fechado, comparamos as respectivas aljavas ordinárias, bem como suas apresentações. Finalmente, após caracterizarmos o ideal Q, exibimos alguns exemplos de extensões no contexto de álgebras de caminhos com relações, que mostram que A pode ser de uma das classes citadas sem que B o seja / Let A and B be two Artin algebras such that B is a split-by-nilpotent extension of A by Q, were Q is a nilpotent ideal of B. We study some homological properties of the categories mod A and mod B such that the projetive and the injetive dimensions of their objects. Using this we show that if B belongs to one of this classes: hereditary, laura, weakly shod, shod, quasi-tilted, left glued, right glued or concealed; then A belongs to same class. Moreover restricting our study to finite dimensional algebras over algebraically closed fields, we compare the ordinary quivers and presentations of the corresponding algebras. Finally, after giving a characterization of ideal Q as above, we exhibit some exemples of split extensions in the context of path algebras bounded by relations, which shows that A can be one of the above cited algebras without B so
3

On Representations of the Jacobi Group and Differential Equations

Webster, Benjamin 01 January 2018 (has links)
In PDEs with nontrivial Lie symmetry algebras, the Lie symmetry naturally yield Fourier and Laplace transforms of fundamental solutions. Applying this fact we discuss the semidirect product of the metaplectic group and the Heisenberg group, then induce a representation our group and use it to investigate the invariant solutions of a general differential equation of the form .

Page generated in 0.1052 seconds