• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 16
  • 5
  • Tagged with
  • 62
  • 62
  • 25
  • 25
  • 23
  • 16
  • 14
  • 14
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Analyse bayésienne et classification pour modèles continus modifiés à zéro

Labrecque-Synnott, Félix 08 1900 (has links)
Les modèles à sur-représentation de zéros discrets et continus ont une large gamme d'applications et leurs propriétés sont bien connues. Bien qu'il existe des travaux portant sur les modèles discrets à sous-représentation de zéro et modifiés à zéro, la formulation usuelle des modèles continus à sur-représentation -- un mélange entre une densité continue et une masse de Dirac -- empêche de les généraliser afin de couvrir le cas de la sous-représentation de zéros. Une formulation alternative des modèles continus à sur-représentation de zéros, pouvant aisément être généralisée au cas de la sous-représentation, est présentée ici. L'estimation est d'abord abordée sous le paradigme classique, et plusieurs méthodes d'obtention des estimateurs du maximum de vraisemblance sont proposées. Le problème de l'estimation ponctuelle est également considéré du point de vue bayésien. Des tests d'hypothèses classiques et bayésiens visant à déterminer si des données sont à sur- ou sous-représentation de zéros sont présentées. Les méthodes d'estimation et de tests sont aussi évaluées au moyen d'études de simulation et appliquées à des données de précipitation agrégées. Les diverses méthodes s'accordent sur la sous-représentation de zéros des données, démontrant la pertinence du modèle proposé. Nous considérons ensuite la classification d'échantillons de données à sous-représentation de zéros. De telles données étant fortement non normales, il est possible de croire que les méthodes courantes de détermination du nombre de grappes s'avèrent peu performantes. Nous affirmons que la classification bayésienne, basée sur la distribution marginale des observations, tiendrait compte des particularités du modèle, ce qui se traduirait par une meilleure performance. Plusieurs méthodes de classification sont comparées au moyen d'une étude de simulation, et la méthode proposée est appliquée à des données de précipitation agrégées provenant de 28 stations de mesure en Colombie-Britannique. / Zero-inflated models, both discrete and continuous, have a large variety of applications and fairly well-known properties. Some work has been done on zero-deflated and zero-modified discrete models. The usual formulation of continuous zero-inflated models -- a mixture between a continuous density and a Dirac mass at zero -- precludes their extension to cover the zero-deflated case. We introduce an alternative formulation of zero-inflated continuous models, along with a natural extension to the zero-deflated case. Parameter estimation is first studied within the classical frequentist framework. Several methods for obtaining the maximum likelihood estimators are proposed. The problem of point estimation is considered from a Bayesian point of view. Hypothesis testing, aiming at determining whether data are zero-inflated, zero-deflated or not zero-modified, is also considered under both the classical and Bayesian paradigms. The proposed estimation and testing methods are assessed through simulation studies and applied to aggregated rainfall data. The data is shown to be zero-deflated, demonstrating the relevance of the proposed model. We next consider the clustering of samples of zero-deflated data. Such data present strong non-normality. Therefore, the usual methods for determining the number of clusters are expected to perform poorly. We argue that Bayesian clustering based on the marginal distribution of the observations would take into account the particularities of the model and exhibit better performance. Several clustering methods are compared using a simulation study. The proposed method is applied to aggregated rainfall data sampled from 28 measuring stations in British Columbia.
42

Actuarial applications of multivariate phase-type distributions : model calibration and credibility

Hassan Zadeh, Amin January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
43

Contribution des familles exponentielles en traitement des images / Contribution of the exponential families to image processing

Ben Arab, Taher 26 April 2014 (has links)
Cette thèse est consacrée à l'évaluation des familles exponentielles pour les problèmes de la modélisation des bruits et de la segmentation des images couleurs. Dans un premier temps, nous avons développé une nouvelle caractérisation des familles exponentielles naturelles infiniment divisible basée sur la fonction trace de la matrice de variance covariance associée. Au niveau application, cette nouvelle caractérisation a permis de détecter la nature de la loi d'un bruit additif associé à un signal où à une image couleur. Dans un deuxième temps, nous avons proposé un nouveau modèle statistique paramétrique mulltivarié basé sur la loi de Riesz. La loi de ce nouveau modèle est appelée loi de la diagonale modifiée de Riesz. Ensuite, nous avons généralisé ce modèle au cas de mélange fini de lois. Enfin, nous avons introduit un algorithme de segmentation statistique d'image ouleur, à travers l'intégration de la méthode des centres mobiles (K-means) au niveau de l'initialisation pour une meilleure définition des classes de l'image et l'algorithme EM pour l'estimation des différents paramètres de chaque classe qui suit la loi de la diagonale modifiée de la loi de Riesz. / This thesis is dedicated to the evaluation of the exponential families for the problems of the noise modeling and the color images segmentation. First, we developed a new characterization of the infinitely divisible natural exponential families based on the trace function of the associated variance-covariance matrix. At the application level, this new characterization allowed to detect the nature of the law of an additive noise associated with a signal or with a color image. Second, we proposed a new parametric multivariate statistical model based on Riesz's distribution. The law of this new model is called the modified diagonal Riesz distribution. Then we generalized this model in the case of a finished mixture of distibution. Finally we introduced an algorithm of statistical segmentation of color images through the integration of the k-means method at the level of the initialization for a better definition of the image classes and the algorithm EM for the estimation of the different parameters of every class which follows the modified diagonal Riesz distribution.
44

Les généralisations des récursivités de Kalman et leurs applications / Kalman recursion generalizations and their applications

Kadhim, Sadeq 20 April 2018 (has links)
Nous considérions des modèles à espace d'état où les observations sont multicatégorielles et longitudinales, et l'état est décrit par des modèles du type CHARN. Nous estimons l'état au moyen des récursivités de Kalman généralisées. Celles-ci reposent sur l'application d'une variété de filtres particulaires et de l’algorithme EM. Nos résultats sont appliqués à l'estimation du trait latent en qualité de vie. Ce qui fournit une alternative et une généralisation des méthodes existantes dans la littérature. Ces résultats sont illustrés par des simulations numériques et une application aux données réelles sur la qualité de vie des femmes ayant subi une opération pour cause de cancer du sein / We consider state space models where the observations are multicategorical and longitudinal, and the state is described by CHARN models. We estimate the state by generalized Kalman recursions, which rely on a variety of particle filters and EM algorithm. Our results are applied to estimating the latent trait in quality of life, and this furnishes an alternative and a generalization of existing methods. These results are illustrated by numerical simulations and an application to real data in the quality of life of patients surged for breast cancer
45

Déconvolution Aveugle en Imagerie de Microscopie Confocale À Balayage Laser

Pankajakshan, Praveen 15 December 2009 (has links) (PDF)
La microscopie confocale à balayage laser, est une technique puissante pour étudier les spécimens biologiques en trois dimensions (3D) par sectionnement optique. Elle permet d'avoir des images de spécimen vivants à une résolution de l'ordre de quelques centaines de nanomètres. Bien que très utilisée, il persiste des incertitudes dans le procédé d'observation. Comme la réponse du système à une impulsion, ou fonction de flou (PSF), est dépendante à la fois du spécimen et des conditions d'acquisition, elle devrait être estimée à partir des images observées du spécimen. Ce problème est mal posé et sous déterminé. Pour obtenir une solution, il faut injecter des connaisances, c'est à dire, a priori dans le problème. Pour cela, nous adoptons une approche bayésienne. L'état de l'art des algorithmes concernant la déconvolution et la déconvolution aveugle est exposé dans le cadre d'un travail bayésien. Dans la première partie, nous constatons que la diffraction due à l'objectif et au bruit intrinsèque à l'acquisition, sont les distorsions principales qui affectent les images d'un spécimen. Une approche de minimisation alternée (AM), restaure les fréquences manquantes au-delà de la limite de diffraction, en utilisant une régularisation par la variation totale sur l'objet, et une contrainte de forme sur la PSF. En outre, des méthodes sont proposées pour assurer la positivité des intensités estimées, conserver le flux de l'objet, et bien estimer le paramètre de la régularisation. Quand il s'agit d'imager des spécimens épais, la phase de la fonction pupille, due aux aberrations sphériques (SA) ne peut être ignorée. Dans la seconde partie, il est montré qu'elle dépend de la difference à l'index de réfraction entre l'objet et le milieu d'immersion de l'objectif, et de la profondeur sous la lamelle. Les paramètres d'imagerie et la distribution de l'intensité originelle de l'objet sont calculés en modifiant l'algorithme AM. Due à la nature de la lumière incohérente en microscopie à fluorescence, il est possible d'estimer la phase à partir des intensités observées en utilisant un modèle d'optique géométrique. Ceci a été mis en évidence sur des données simulées. Cette méthode pourrait être étendue pour restituer des spécimens affectés par les aberrations sphériques. Comme la PSF varie dans l'espace, un modèle de convolution par morceau est proposé, et la PSF est approchée. Ainsi, en plus de l'objet, il suffit d'estimer un seul paramétre libre.
46

Sécurisation des smart cards par masquage de signal informationnel sur canal secondaire

Chaillan, Fabien 13 December 2006 (has links) (PDF)
Les cartes à puce, mondialement appelées Smart Cards, sont de véritables ordinateurs embarqués dont le but est d'effectuer des opérations de cryptographie et de stocker des données confidentielles, telles que des sommes d'argent, des informations biométriques, des droits d'accès. Il n'est donc pas étonnant que les pirates tentent de s'accaparer ces données, par des failles où la carte laisse fuir des informations capitales, appelées canaux secondaires. Le but de cette thèse est de concevoir des techniques de traitement du signal de masquage de signaux de consommation de courant. Un premier chapitre introductif présente l'univers de la carte à puce ainsi que les enjeux de sa sécurisation. Cela permet de fixer l'objectif à atteindre qui est de concevoir des techniques de masquage des signaux compatibles avec la technologie Smart Card. Le second chapitre présente l'étude et la caractérisation statistique d'un système dynamique chaotique servant à la genèse de nombres pseudo-aléatoires. Le chapitre suivant présente la méthode de masquage par décomposition des signaux, consistant à remplacer les échantillons du signal à masquer par les coefficients de son développement de Karhunen-Loève. Enfin, un dernier chapitre présente une autre technique de masquage des signaux où le modèle utilisé pour la consommation de courant est paramétrique. Le paramètre est estimé selon le critère du maximum de vraisemblance par une technique originale basée sur le couplage du filtrage adapté stochastique utilisé en détection avec l'algorithme Expectation-Maximization. Toutes les techniques sont validées à l'aide de signaux réels.
47

Analyse bayésienne et classification pour modèles continus modifiés à zéro

Labrecque-Synnott, Félix 08 1900 (has links)
Les modèles à sur-représentation de zéros discrets et continus ont une large gamme d'applications et leurs propriétés sont bien connues. Bien qu'il existe des travaux portant sur les modèles discrets à sous-représentation de zéro et modifiés à zéro, la formulation usuelle des modèles continus à sur-représentation -- un mélange entre une densité continue et une masse de Dirac -- empêche de les généraliser afin de couvrir le cas de la sous-représentation de zéros. Une formulation alternative des modèles continus à sur-représentation de zéros, pouvant aisément être généralisée au cas de la sous-représentation, est présentée ici. L'estimation est d'abord abordée sous le paradigme classique, et plusieurs méthodes d'obtention des estimateurs du maximum de vraisemblance sont proposées. Le problème de l'estimation ponctuelle est également considéré du point de vue bayésien. Des tests d'hypothèses classiques et bayésiens visant à déterminer si des données sont à sur- ou sous-représentation de zéros sont présentées. Les méthodes d'estimation et de tests sont aussi évaluées au moyen d'études de simulation et appliquées à des données de précipitation agrégées. Les diverses méthodes s'accordent sur la sous-représentation de zéros des données, démontrant la pertinence du modèle proposé. Nous considérons ensuite la classification d'échantillons de données à sous-représentation de zéros. De telles données étant fortement non normales, il est possible de croire que les méthodes courantes de détermination du nombre de grappes s'avèrent peu performantes. Nous affirmons que la classification bayésienne, basée sur la distribution marginale des observations, tiendrait compte des particularités du modèle, ce qui se traduirait par une meilleure performance. Plusieurs méthodes de classification sont comparées au moyen d'une étude de simulation, et la méthode proposée est appliquée à des données de précipitation agrégées provenant de 28 stations de mesure en Colombie-Britannique. / Zero-inflated models, both discrete and continuous, have a large variety of applications and fairly well-known properties. Some work has been done on zero-deflated and zero-modified discrete models. The usual formulation of continuous zero-inflated models -- a mixture between a continuous density and a Dirac mass at zero -- precludes their extension to cover the zero-deflated case. We introduce an alternative formulation of zero-inflated continuous models, along with a natural extension to the zero-deflated case. Parameter estimation is first studied within the classical frequentist framework. Several methods for obtaining the maximum likelihood estimators are proposed. The problem of point estimation is considered from a Bayesian point of view. Hypothesis testing, aiming at determining whether data are zero-inflated, zero-deflated or not zero-modified, is also considered under both the classical and Bayesian paradigms. The proposed estimation and testing methods are assessed through simulation studies and applied to aggregated rainfall data. The data is shown to be zero-deflated, demonstrating the relevance of the proposed model. We next consider the clustering of samples of zero-deflated data. Such data present strong non-normality. Therefore, the usual methods for determining the number of clusters are expected to perform poorly. We argue that Bayesian clustering based on the marginal distribution of the observations would take into account the particularities of the model and exhibit better performance. Several clustering methods are compared using a simulation study. The proposed method is applied to aggregated rainfall data sampled from 28 measuring stations in British Columbia.
48

Actuarial applications of multivariate phase-type distributions : model calibration and credibility

Hassan Zadeh, Amin January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
49

Classification non supervisée et sélection de variables dans les modèles mixtes fonctionnels. Applications à la biologie moléculaire.

Giacofci, Madison 22 October 2013 (has links) (PDF)
Un nombre croissant de domaines scientifiques collectent de grandes quantités de données comportant beaucoup de mesures répétées pour chaque individu. Ce type de données peut être vu comme une extension des données longitudinales en grande dimension. Le cadre naturel pour modéliser ce type de données est alors celui des modèles mixtes fonctionnels. Nous traitons, dans une première partie, de la classification non-supervisée dans les modèles mixtes fonctionnels. Nous présentons dans ce cadre une nouvelle procédure utilisant une décomposition en ondelettes des effets fixes et des effets aléatoires. Notre approche se décompose en deux étapes : une étape de réduction de dimension basée sur les techniques de seuillage des ondelettes et une étape de classification où l'algorithme EM est utilisé pour l'estimation des paramètres par maximum de vraisemblance. Nous présentons des résultats de simulations et nous illustrons notre méthode sur des jeux de données issus de la biologie moléculaire (données omiques). Cette procédure est implémentée dans le package R "curvclust" disponible sur le site du CRAN. Dans une deuxième partie, nous nous intéressons aux questions d'estimation et de réduction de dimension au sein des modèles mixtes fonctionnels et nous développons en ce sens deux approches. La première approche se place dans un objectif d'estimation dans un contexte non-paramétrique et nous montrons dans ce cadre, que l'estimateur de l'effet fixe fonctionnel basé sur les techniques de seuillage par ondelettes possède de bonnes propriétés de convergence. Notre deuxième approche s'intéresse à la problématique de sélection des effets fixes et aléatoires et nous proposons une procédure basée sur les techniques de sélection de variables par maximum de vraisemblance pénalisée et utilisant deux pénalités SCAD sur les effets fixes et les variances des effets aléatoires. Nous montrons dans ce cadre que le critère considéré conduit à des estimateurs possédant des propriétés oraculaires dans un cadre où le nombre d'individus et la taille des signaux divergent. Une étude de simulation visant à appréhender les comportements des deux approches développées est réalisée dans ce contexte.
50

Contribution des familles exponentielles en traitement des images

Ben Arab, Taher 26 April 2014 (has links) (PDF)
Cette thèse est consacrée à l'évaluation des familles exponentielles pour les problèmes de la modélisation des bruits et de la segmentation des images couleurs. Dans un premier temps, nous avons développé une nouvelle caractérisation des familles exponentielles naturelles infiniment divisible basée sur la fonction trace de la matrice de variance covariance associée. Au niveau application, cette nouvelle caractérisation a permis de détecter la nature de la loi d'un bruit additif associé à un signal où à une image couleur. Dans un deuxième temps, nous avons proposé un nouveau modèle statistique paramétrique mulltivarié basé sur la loi de Riesz. La loi de ce nouveau modèle est appelée loi de la diagonale modifiée de Riesz. Ensuite, nous avons généralisé ce modèle au cas de mélange fini de lois. Enfin, nous avons introduit un algorithme de segmentation statistique d'image ouleur, à travers l'intégration de la méthode des centres mobiles (K-means) au niveau de l'initialisation pour une meilleure définition des classes de l'image et l'algorithme EM pour l'estimation des différents paramètres de chaque classe qui suit la loi de la diagonale modifiée de la loi de Riesz.

Page generated in 0.0498 seconds