• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification de paramètres par analyse inverse à l’aide d’un algorithme méta-heuristique : applications à l’interaction sol structure, à la caractérisation de défauts et à l’optimisation de la métrologie

Fontan, Maxime 04 May 2011 (has links)
Cette thèse s’inscrit dans la thématique d’évaluation des ouvrages par des méthodes nondestructives. Le double objectif est de développer un code permettant d’effectuer au choixl’identification de paramètres par analyse inverse en utilisant un algorithme méta heuristique, ou dedéfinir une métrologie optimale (nombre de capteurs, positions, qualité) sur une structure, en vued’une identification de paramètres. Nous avons développé un code permettant de répondre à cesdeux objectifs. Il intègre des mesures in situ, un modèle mécanique aux éléments finis de lastructure étudiée et un algorithme d’optimisation méta heuristique appelé algorithme d’optimisationpar essaim particulaire. Ce code a d’abord été utilisé afin de caractériser l’influence de la métrologiesur l’identification de paramètres par analyse inverse, puis, en phase expérimentale, nous avonstravaillé sur des problèmes d’interactions sol structure. Un travail a également été réalisé surl’identification et la caractérisation de défauts par sollicitations au marteau d’impact. Enfin unexemple d’optimisation de métrologie (nombre de capteurs, positions et qualité) a été réalisé enutilisant le code original adapté pour cette étude. / This thesis deals with non-destructive evaluation in civil engineering. The objective is of two-fold:developing a code that will identify mechanical parameters by inverse analysis using a metaheuristicalgorithm, and developing another code to optimize the sensors placement (with respect tothe number and quality of the sensors) in order to identify mechanical parameters with the bestaccuracy. Our code integrates field data, a finite element model of the studying structure and aparticle swarm optimization algorithm to answer those two objectives. This code was firstly used tofocus on how the sensors placement, the number of used sensors, and their quality impact theaccuracy of parameters’ identification. Then, an application on a soil structure interaction wasconducted. Several tests to identify and characterize defaults using an impact hammer were alsocarried on. The last application focused on the optimization of the metrology in order to identifymechanical parameters with the best accuracy. This last work highlights the possibilities of theseresearches for structural health monitoring applications in civil engineering project.
2

Perfectionnement de métaheuristiques pour l'optimisation continue / Improvement of metaheuristics for continuous optimization

Boussaid, Ilhem 29 June 2013 (has links)
Les métaheuristiques sont des algorithmes génériques, souvent inspirés de la nature, conçues pour résoudre des problèmes d'optimisation complexes. Parmi les métaheuristiques les plus récentes, nous retenons celle basée sur la théorie de la biogéographie insulaire: Biogeography-based optimization (BBO).Dans cette thèse, nous considérons à la fois les problèmes d'optimisation globale à variables continues avec et sans contraintes. De nouvelles versions hybrides de BBO sont proposées comme des solutions très prometteuses pour résoudre les problèmes considérés. Les méthodes proposées visent à pallier les inconvénients de la convergence lente et du manque de diversité de l'algorithme BBO. Dans la première partie de cette thèse, nous présentons la méthode que nous avons développée, issue d'une hybridation de BBO avec l'évolution différentielle (DE) pour résoudre des problèmes d'optimisation sans contraintes. Nous montrons que les résultats de l'algorithme proposé sont plus précis, notamment pour des problèmes multimodaux, qui sont parmi les problèmes les plus difficiles pour de nombreux algorithmes d'optimisation. Pour résoudre des problèmes d'optimisation sous contraintes, nous proposons trois nouvelles variantes de BBO. Des expérimentations ont été menées pour rendre compte de l'utilité des méthodes proposées. Dans une deuxième partie, nous nous intéressons à l'étude des capacités des méthodes proposées à résoudre des problèmes d'optimisation, issus du monde réel. Nous nous proposons d'abord de résoudre le problème d'allocation optimale de puissance pour la détection décentralisée d'un signal déterministe dans un réseau de capteurs sans fil, compte tenu des fortes contraintes en ressources énergétiques et en bande passante des noeuds répartis. L'objectif est de minimiser la puissance totale allouée aux capteurs, tout en gardant la probabilité d'erreur de détection au dessous d'un seuil requis. Dans un deuxième temps, nous nous focalisons sur la segmentation d'images en niveaux de gris par seuillage multi-niveaux. Les seuils sont déterminés de manière à maximiser l'entropie floue. Ce problème d'optimisation est résolu en appliquant une variante de BBO (DBBO-Fuzzy) que nous avons développée. Nous montrons l'efficacité de la méthode proposée aux travers de résultats expérimentaux / Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems. Among representative metaheuristics, Biogeography-based optimization (BBO) has been recently proposed as a viable stochastic optimization algorithm. In this PhD thesis, both unconstrained and constrained global optimization problems in a continuous space are considered. New hybrid versions of BBO are proposed as promising solvers for the considered problems. The proposed methods aim to overcome the drawbacks of slow convergence and the lack of diversity of the BBO algorithm. In the first part of this thesis, we present the method we developed, based on an hybridization of BBO with the differential evolution (DE) algorithm, to solve unconstrained optimization problems. We show that the results of the proposed algorithm are more accurate, especially for multimodal problems, which are amongst the most difficult-to-handle class of problems for many optimization algorithms. To solve constrained optimization problems, we propose three new variations of BBO. Our extensive experimentations successfully demonstrate the usefulness of all these modifications proposed for the BBO algorithm. In the second part, we focus on the applications of the proposed algorithms to solve real-world optimization problems. We first address the problem of optimal power scheduling for the decentralized detection of a deterministic signal in a wireless sensor network, with power and bandwidth constrained distributed nodes. The objective is to minimize the total power spent by the whole sensor network while keeping the detection error probability below a required threshold. In a second time, image segmentation of gray-level images is performed by multilevel thresholding. The optimal thresholds for this purpose are found by maximizing the fuzzy entropy. The optimization is conducted by a newly-developed BBO variants (DBBO-Fuzzy). We show the efficiency of the proposed method through experimental results

Page generated in 0.2677 seconds