Spelling suggestions: "subject:"algorithme dde Newton-Euler"" "subject:"algorithme dee Newton-Euler""
1 |
Modèle dynamique analytique de la nage tridimensionnelle anguilliforme pour la robotiquePorez, Mathieu 19 September 2007 (has links) (PDF)
Le travail présenté dans ce manuscrit est consacré à l'élaboration d'un modèle dynamique de la nage pour la commande du futur "Robot Anguille" du projet ROBEA-CNRS du même nom. Dans l'absolu, le calcul des interactions entre un corps déformable et le fluide sur lequel il s'appuie pour se déplacer, est un problème complexe nécessitant l'intégration des équations de Navier-Stokes couplées aux équations non-linéaires de la dynamique du corps soumis à des transformations finies. Poursuivant des objectifs de commande pour la robotique, la solution proposée dans ce travail est basée sur la fusion de deux théories : celle du "corps mince" issue de la mécanique des fluides et celle des "poutres Cosserat" de la mécanique du solide. La première théorie permet de remplacer l'écoulement 3-D autour du poisson par la stratification "tranche par tranche" d'écoulements plans, transverses à l'axe principal du corps de l'animal. Quant à la seconde, elle assimile le poisson à l'assemblage continu de sections rigides modélisant ses vertèbres ou, dans un contexte plus technologique, les plate-formes parallèles de notre robot bio-mimétique. Sur la base de cette modélisation, le travail présenté a pour but d'établir les dynamiques de la tête et des vertèbres du poisson afin d'élaborer in fine un algorithme de simulation numérique basé sur le "formalisme de Newton-Euler" de la robotique, ici étendu aux robots locomoteurs continus. Finalement, le modèle élaboré réalise une généralisation du modèle de Lighthill au cas de la nage tridimensionnelle d'un corps élancé autopropulsé. Outre ce résultat purement analytique, le simulateur qui en résulte nous a permis de mettre au point des allures jamais étudiées jusqu'alors. Qui plus est, il tourne en "temps réel", tout en maintenant un bon niveau de précision (i.e. inférieur à 10%) comparé à la référence basée sur la résolution numérique des équations de Navier-Stokes.
|
2 |
Modélisation dynamique de la locomotion compliante : Application au vol battant bio-inspiré de l'insecteBelkhiri, Ayman 03 October 2013 (has links) (PDF)
Le travail présenté dans cette thèse est consacré à la modélisation de la dynamique de locomotion des "soft robots", i.e. les systèmes multi-corps mobiles compliants. Ces compliances peuvent être localisées et considérées comme des liaisons passives du système,ou bien introduites par des flexibilités distribuées le long des corps. La dynamique de ces systèmes est modélisée en adoptant une approche Lagrangienne basée sur les outils mathématiques développés par l'école américaine de mécanique géométrique. Du point de vue algorithmique, le calcul de ces modèles dynamiques s'appuie sur un algorithme récursif et efficace de type Newton-Euler, ici étendu aux robots locomoteurs munis d'organes compliants. Poursuivant des objectifs de commande et de simulation rapide pour la robotique, l'algorithme proposé est capable de résoudre la dynamique externe directe ainsi que la dynamique inverse des couples internes. Afin de mettre en pratique l'ensemble de ces outils de modélisation, nous avons pris le vol battant des insectes comme exemple illustratif. Les équations non-linéaires qui régissent les déformations passives de l'aile sont établies en appliquant deux méthodes différentes. La première consiste à séparer le mouvement de l'aile en une composante rigide dite de "repère flottant" et une composante de déformation. Cette dernière est paramétrée dans le repère flottant par la méthode des modes supposés ici appliquée à l'aile vue comme une poutre d'Euler-Bernoulli soumise à la flexion et à la torsion. Quant à la seconde approche, les mouvements de l'aile n'y sont pas séparés mais directement paramétrés par les transformations finies rigides et absolues d'une poutre Cosserat. Cette approche est dite Galiléenne ou "géométriquement exacte" en raison du fait qu'elle ne requiert aucune approximation en dehors des inévitables discrétisations spatiale et temporelle imposées parla résolution numérique de la dynamique du vol. Dans les deux cas,les forces aérodynamiques sont prises en compte via un modèle analytique simplifié de type Dickinson. Les modèles et algorithmes résultants sont appliqués à la conception d'un simulateur du vol, ainsi qu'à la conception d'un prototype d'aile, dans le contexte du projet coopératif (ANR) EVA.
|
3 |
Modélisation dynamique de la locomotion compliante : Application au vol battant bio-inspiré de l'insecte / Dynamics modeling of compliant locomotion : Application to flapping flight bio-inspired by insectsBelkhiri, Ayman 03 October 2013 (has links)
Le travail présenté dans cette thèse est consacré à la modélisation de la dynamique de locomotion des "soft robots", i.e. les systèmes multi-corps mobiles compliants. Ces compliances peuvent être localisées et considérées comme des liaisons passives du système,ou bien introduites par des flexibilités distribuées le long des corps. La dynamique de ces systèmes est modélisée en adoptant une approche Lagrangienne basée sur les outils mathématiques développés par l’école américaine de mécanique géométrique. Du point de vue algorithmique, le calcul de ces modèles dynamiques s’appuie sur un algorithme récursif et efficace de type Newton-Euler, ici étendu aux robots locomoteurs munis d’organes compliants. Poursuivant des objectifs de commande et de simulation rapide pour la robotique, l’algorithme proposé est capable de résoudre la dynamique externe directe ainsi que la dynamique inverse des couples internes. Afin de mettre en pratique l’ensemble de ces outils de modélisation, nous avons pris le vol battant des insectes comme exemple illustratif. Les équations non-linéaires qui régissent les déformations passives de l’aile sont établies en appliquant deux méthodes différentes. La première consiste à séparer le mouvement de l’aile en une composante rigide dite de "repère flottant" et une composante de déformation. Cette dernière est paramétrée dans le repère flottant par la méthode des modes supposés ici appliquée à l’aile vue comme une poutre d’Euler-Bernoulli soumise à la flexion et à la torsion. Quant à la seconde approche, les mouvements de l’aile n’y sont pas séparés mais directement paramétrés par les transformations finies rigides et absolues d’une poutre Cosserat. Cette approche est dite Galiléenne ou "géométriquement exacte" en raison du fait qu’elle ne requiert aucune approximation en dehors des inévitables discrétisations spatiale et temporelle imposées parla résolution numérique de la dynamique du vol. Dans les deux cas,les forces aérodynamiques sont prises en compte via un modèle analytique simplifié de type Dickinson. Les modèles et algorithmes résultants sont appliqués à la conception d’un simulateur du vol, ainsi qu’à la conception d’un prototype d’aile, dans le contexte du projet coopératif (ANR) EVA. / The objective of the present work is to model the locomotion dynamics of "soft robots", i.e. compliant mobile multi-body systems. These compliances can be either localized and treated as passive joints of the system, or introduced by distributed flexibilities along the bodies. The dynamics of these systems is modeled in a Lagrangian approach based on the mathematical tools developed by the American school of geometric mechanics. From the algorithmic viewpoint, the computation of these dynamic models is based on a recursive and efficient Newton-Euler algorithm which is extended here to the case of robots equipped with compliant organs. The proposed algorithm is compatible with control, fast simulation and real time robotic applications. It is able to solve the direct external dynamics as well as the inverse internal torque dynamics. The modeling tools and algorithms developed in this thesis are applied to one of the most advanced cases of compliante locomotion i.e. the flapping flight MAVs bio-inspired by insects. The nonlinear equations governing the passive deformations of the wing are derived using two different methods. In the first method, we separate the wing movement into a rigid component (which corresponds to the movements of a "floating frame"), and a deformation component. The latter one is parameterized in the floating frame using the assumed modes approach where the wing is considered as an Euler-Bernoulli beam undergoing flexion and torsion deformations. Regarding the second method, the wing movements are no longer separated but directly parameterize dusing rigid finite absolute transformations of a Cosserat beam. This method is called Galilean or "geometrically exact" because it does not require any approximation apart from the unavoidable spatial and temporal discretizations imposed by numerical resolution of the flight dynamics. In both cases, the aerodynamic forces are taken into account through a simplified analytical model. The resulting models and algorithms are used in the context of the collaborative project (ANR) EVA to develop a flight simulator, and to design wing prototype.
|
Page generated in 0.0799 seconds