• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 11
  • 9
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utilização de árvores PQR para redução de cruzamentos em grafos acíclicos direcionados / Using PQR trees for reducing crossings in directed acyclic graphs

Marchete Filho, João Rubens, 1984- 23 August 2018 (has links)
Orientador: Celmar Guimarães da Silva / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-23T22:48:20Z (GMT). No. of bitstreams: 1 MarcheteFilho_JoaoRubens_M.pdf: 10431540 bytes, checksum: 5b2b14817538f82611b82878238e256c (MD5) Previous issue date: 2013 / Resumo: A utilização de grafos acíclicos direcionados permite a representação gráfica de estruturas hierárquicas, o que facilita encontrar padrões e tendências durante a análise dessas estruturas. A principal abordagem de desenho automático desses grafos divide seus vértices em camadas, de tal modo que as arestas sempre apontem para uma mesma direção. Um dos principais critérios estéticos dessas estruturas visuais é evitar, sempre que possível, o cruzamento entre arestas, facilitando assim o entendimento do desenho. Os algoritmos de redução de cruzamentos devem também prover essa solução em um tempo inferior a 0,1 segundo, tornando mais apropriada sua utilização em estruturas visuais interativas. Nesta dissertação, pesquisou-se como uma estrutura de dados conhecida por árvore PQR poderia ser utilizada a fim de aperfeiçoar dois métodos de redução de cruzamentos: BC e MEDIAN. Dentre os novos métodos desenvolvidos, destacaram se: PQR_BC2 para o aperfeiçoamento do BC; PQR_M2 para o aperfeiçoamento do MEDIAN. Os resultados obtidos através da aplicação dos métodos a pacotes de grafos amplamente utilizados na literatura mostram que os métodos baseados em árvores PQR superaram o método BC e o método MEDIAN, com relação à redução de cruzamentos, em 42% dos casos, empatando nesse critério em 45% dos grafos analisados. Além disso, os métodos baseados em árvores PQR também executaram em um tempo viável para aplicação em estruturas visuais interativas / Abstract: The use of directed acyclic graphs allows the graphical representation of hierarchical structures, which eases to find patterns and trends during the analysis of these structures. The main approach to automatic design of these graphs divides its vertices in layers so that the edges always point toward the same direction. One of the major aesthetic criteria of such visual structures is to avoid, whenever possible, the crossing between the edges, thereby facilitating the understanding of the drawing. The crossing reduction algorithms must also provide this solution in a time less than 0.1 second, allowing its use in interactive visual structures. In this dissertation, was investigated as a data structure known as PQR tree could be used to improve both methods for reducing crossings: BC and MEDIAN. Among the new methods developed, stood out: PQR_BC2 for improvement of BC; PQR_M2 for improving the MEDIAN. The results obtained by applying the methods to packets of graphs widely used in the literature show that the methods based on PQR trees outperformed the BC method and the MEDIAN method, with respect to the crossing reduction, in 42% of cases, tying this criterion in 45% of the graph analyzed. In addition, methods based on PQR trees also performed at a feasible time for application to interactive visual structures / Mestrado / Tecnologia e Inovação / Mestre em Tecnologia
2

Um estudo computacional sobre o problema de decomposição de grafos em árvore / A computational study of the tree decomposition problem

Silva, Ana Shirley Ferreira da January 2005 (has links)
SILVA, Ana Shirley Ferreira da. Um estudo computacional sobre o problema de decomposição de grafos em árvore. 2005. 111 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2005. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-08T18:14:01Z No. of bitstreams: 1 2005_dis_asfsilva.pdf: 965121 bytes, checksum: 0620082b39fd950bff00ce625f59f846 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-07-13T12:35:55Z (GMT) No. of bitstreams: 1 2005_dis_asfsilva.pdf: 965121 bytes, checksum: 0620082b39fd950bff00ce625f59f846 (MD5) / Made available in DSpace on 2016-07-13T12:35:55Z (GMT). No. of bitstreams: 1 2005_dis_asfsilva.pdf: 965121 bytes, checksum: 0620082b39fd950bff00ce625f59f846 (MD5) Previous issue date: 2005 / The notion of Tree Decomposition was introduced by Robertson and Seymour in their seris of articles about graph minors and can be intuitively seen as an organization of the vertices and edges of the graph in a tree structure, being the treewidth equal to the size of the largest subset of vertices minus one. The minimum treewidth over all tree decompositions of a graph gives us the treewidth of the graph. Many hard problems can be polinomially solved for a graph G if a tree decomposition with bounded treewidth of G is given. For instance, hamiltonian cycle, maximum independent set isomorphism, vertex coloring, etc. The complexity of the algorithm that solves such problems are generally exponential on the width of the given tree decomposition. So, we can expect that finding a tree decomposition of minimum width is hard. In fact, Arnborg, Corneil and Proskurowski [2] showed that the problem os NP-hard. The problem of finding the treewidth of a graph is the subject of this thesis. The decision variation of the problem is, given a graph G and for a fixed integer k, deciding if the treewidth of G is at most k. We discuss a proof that the decision problem can be polynomially solved. In the last decade were proposed many heuristics for computing upper bounds [3, 10], lower bounds [6, 8, 11], enumeration methods [5] and approximative algorithms [1, 7, 4]. However, none of these results can be considered as good ones, since there is no benchmarks for with the treewidth is known, as well as the difference between the lower and upper bounds for the existing benchmarks is very large. Additionally, the enumeration method was showed to be inefficient even for the decision problem with k fixed in small values (e.g., k = 4) [12]. So, we propose another enumeration method for the problem that can be used along with branch and bound techniques. Actually, we work with the triangulation problem that is equivalent to the tree decomposition problem. We propose a new representation of a solution, wich uses the concept of total orders. Once a solution ca be represented like that, an algorithm that enumerates all the total extensions of a given partial order can be used to enumerate all solutions for the tree decomposition problem, as long as we offer the partial order containing only the reflexive pairs vv, where v is a vertex of the input graph. The proposed enumeration method is a modification of the Corrêa and Szwarcfiter algorithm [9]. This modification allows only the total extensions to be enumerated. The algorithm presents two principal advantages over the Bodlander and Kloks method: it can be used in conjunction with the Branch and Bound method; and it can enumerate a subspace of solutions, what can be useful if we know some existing relations in an optimal solution, or even to investigate such subspaces in order to characterize them. We have implemented and tested the proposed algorithm, applying the branch and bound method and restricting the subspace of solutions. The partial orders used to define the explored subspaces were obtained based on the labeling heuristics for finding upper bounds. Unfortunately, we did not obtain good results because, even when we restricted the subspace of solutions to be searched, the number of nodes generated in the branch and bound tree was too large, exceeding the machine’s memory capacity. In the text, we also present the proof of the NP-hardness of the problem, an algorithm to compute an optimal decompostion of a chordal graph, and also the many existing heuristics to compute lower and upper bounds. In addition, we implemented and tested the labeling heuristics for upper bounds and a GRASP heuristic, being the first application of a GRASP meta-heuristic to the problem. / A noção de Decomposição em árvore foi introduzida por Robertson e Seymour em sua série de artigos sobre menores de grafos e pode ser definida, intuitivamente, como uma organização dos vértices e arestas do grafo em uma estrutura de árvore, sendo a largura da decomposição igual ao tamanho do maior subconjunto de vértices relacionado a um nó desta estrutura menos um. A largura mínima de uma decomposição em árvore de um grafo G é chamada de largura em árvore de G. Vários problemas difíceis podem ser resolvidos em tempo polinomial, dada uma decomposição em árvore de largura limitada, como, por exemplo, Ciclo Hamiltoniano, Conjunto Independente Máximo, Isomorfismo, Coloração de Vértices, etc. A complexidade dos algoritmos que resolvem tais problemas são geralmente exponenciais na largura da decomposição fornecida. Logo, é esperado que encontrar uma decomposição de largura mínima seja um problema difícil. De fato, Arnborg, Corneil e Proskurowski [2] mostraram que o problema é NP - difícil. O problema de encontrar a largura em árvore de um grafo qualquer é o objeto de estudo da presente dissertação de mestrado. Uma restrição desse problema é o de decidir, para um inteiro k fixo, se a largura em árvore de G é no máximo k. Apresentamos a prova de que o problema para k fixo pode ser resolvido polinomialmente. Na última década foram propostas várias heurísticas que fornecem limites superiores para o problema [3, 10], heurísticas para o cálculo de limites inferiores [6, 8, 11], além de métodos enumerativos [5] e algoritmos aproximativos [1, 7, 4]. Porém, nenhum resultado obtido pode ser considerado bom, uma vez que não existe um benchmark para o qual se conhece a largura em árvore e os limites inferiores e superiores têm se mostrado muito distantes. Além disso, o algoritmo enumerativo existente mostrou-se ineficiente mesmo para o problema de decisão com k fixo em valores pequenos (por exemplo, k = 4) [12]. É neste quadro que propomos um método enumerativo para o problema. Na verdade, abordamos o problema de triangularização, que é equivalente ao problema de decomposição em árvore. Isso nos permitiu a proposta de uma nova representação para uma solução do problema que utiliza o conceito de ordens totais. Uma vez que as soluções podem assim ser representadas, um algoritmo que enumere as extensões totais de uma dada ordem parcial pode ser utilizado para enumerar todas as soluções do problema, bastando que fornecemos uma ordem que contenha apenas os pares reflexivos vv, onde v é um vértice do grafo de entrada. O método enumerativo proposto é uma modificação do algoritmo de Corrêa e Szwarcfiter [9]. Esta modificação faz com que apenas as extensões totais da ordem fornecida seja enumerada. O algoritmo apresenta duas principais vantagens com relação ao método enumerativo proposto por Bodlaender e Kloks: pode ser utilizado juntamente com o método “branch and bound”; e pode enumerar um sub-espaço de soluções, o que pode ser útil caso se conheça algumas relações existentes na solução ótima, ou mesmo para investigar determinados sub-espaços de soluções. Implementamos e testamos o algoritmo proposto, aplicando o método “branch and bound” e restringindo o espaço de soluções. As ordens parciais utilizadas para definir os sub-espaços explorados foram obtidas baseando-se nas heurísticas de limite superior que utilizam rotulação. Infelizmente, não obtivemos bons resultados, pois, mesmo restringindo o espaço de busca, a quantidade de nós gerados da árvore de “branch and bound” foi muito grande, excedendo a quantidade de memória disponível da máquina utilizada para os testes. No texto da dissertação apresentamos também um estudo da complexidade do problema, um algoritmo para calcular uma decomposição em árvore ótima de um grafo cordal, além das várias heurísticas para o cálculo de limites superiores e inferiores existentes. Além disso, implementamos e testamos as heurísticas de limite superior que utilizam rotulação e uma heurística GRASP, tendo sido o primeiro estudo de uma aplicação da meta-heurística GRASP para o problema de decomposição em árvore.
3

O problema da máxima interseção de k-subconjuntos / Maximum k-subset problem

Bogue, Eduardo Theodoro, 1990- 25 August 2018 (has links)
Orientadores: Cid Carvalho de Souza, Eduardo Candido Xavier / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-25T06:06:38Z (GMT). No. of bitstreams: 1 Bogue_EduardoTheodoro_M.pdf: 1929433 bytes, checksum: 1c490811ba46f8482ede0d93da1163f8 (MD5) Previous issue date: 2014 / Resumo: Neste projeto, nós estudamos o Problema da Máxima Interseção de k-Subconjuntos (kMIS). Dado um inteiro k, um conjunto base U e uma coleção S de subconjuntos de U, o problema kMIS consiste em selecior k subconjuntos distintos S1, S2, ... , Sk em S cujo tamanho da interseção de |S1 ? S2 ? ... ? Sk| seja máxima. Trata-se de um problema NP-difícil e difícil de ser aproximado que ocorre em aplicações de áreas como biologia computacional e privacidade de dados. Até o nosso conhecimento, nenhum método exato foi proposto para resolver este problema. Neste trabalho, introduzimos cinco formulações de programação linear inteira para o problema, sendo três baseadas no método de Branch-and-Bound e duas no método de Branch-and-Cut. Além disso, uma heurística gulosa e uma meta-heurística GRASP foram desenvolvidas com o intuito de gerar bons limitantes inferiores. A heurística GRASP desenvolvida foi capaz de encontrar soluções muito próximas da solução ótima. Ademais, introduzimos um método muito eficiente de pré-processamento para reduzir o tamanho da entrada. Experimentos computacionais foram realizados de forma a analisar o desempenho dos modelos de programação linear inteira em questão, demonstrando que os modelos baseados no método de Branch-and-Cut obtiveram melhores resultados / Abstract: In this project, we study the Maximum k-Subset Intersection problem (kMIS). Given an integer k, a ground set U and a collection S of subsets of U, the kMIS problem is to select k distinct subsets S1, S2, ... , Sk in S whose intersection size |S1 ? S2 ? ... ? Sk| is maximum. The kMIS problem is NP-hard and hard to approximate and occurs in areas of applications such as computational biology and data privacy. To the best of our knowledge, no exact method was proposed to solve this problem. In this work, we introduce five integer linear programming formulations for the problem, three using a simple Branch-and-Bound method and two using a Branch-and-Cut method. We also present a greedy heuristic and a metaheuristic GRASP developed in order to generate good lower bounds. The heuristic GRASP developed was able to find solutions very close to the optimal ones. Furthermore, we introduce a very efficient preprocessing procedure to reduce the size of the input. Computational experiments were performed in order to analyze the performance of the integer linear programming models in question, showing that the Branch-and-Cut models performed better / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
4

O problema da árvore geradora com muitas folhas / The maximum leaf spanning tree problem

Reis, Márcio Félix, 1986- 05 August 2014 (has links)
Orientador: Orlando Lee / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-25T08:59:09Z (GMT). No. of bitstreams: 1 Reis_MarcioFelix_M.pdf: 1988657 bytes, checksum: 6ee5ea6ba406aea3ccb7e3332e679eab (MD5) Previous issue date: 2014 / Resumo: Neste trabalho estudamos o problema da árvore geradora com muitas folhas (PAGMF). Este problema pode ser usado como abstração para diversos problemas práticos e sabe-se que é NP-difícil. Estudamos, implementamos e executamos testes para algoritmos aproximados e exatos para o PAGMF e para um caso particular que considera apenas grafos cúbicos. O principal objetivo do trabalho foi verificar o comportamento prático dos algoritmos estudados. Para as instâncias testadas, em geral, o algoritmo guloso apresentou melhores resultados para o PAGMF e o algoritmo 2-aproximado teve os melhores resultados para os grafos cúbicos / Abstract: In this work we study the maximum leaf spanning tree problem (MLSTP). This problem can be used as an abstraction for many practical problems and is known to be NP-hard. We studied, implemented and executed tests for approximate and exact algorithms for the MLSTP and for a particular case that considers only cubic graphs. The main objective of this study was to investigate the practical behavior of the algorithms studied. For the tested instances, in general, the greedy algorithm showed better results for the MLSTP and the 2-approximate algorithm had the best results for cubic graphs / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
5

Sobre a coloração total semiforte / On the adjacent-vertex-distinguishing-total colouring of graphs

Luiz, Atílio Gomes, 1987- 25 August 2018 (has links)
Orientadores: Célia Picinin de Mello, Christiane Neme Campos / Texto em português e inglês / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-25T12:30:28Z (GMT). No. of bitstreams: 1 Luiz_AtilioGomes_M.pdf: 1439406 bytes, checksum: e2dc07f910b1876087a8f61428919e30 (MD5) Previous issue date: 2014 / Resumo: O problema da coloração total semiforte foi introduzido por Zhang et al. por volta de 2005. Este problema consiste em associar cores às arestas e aos vértices de um grafo G=(V(G),E(G)), utilizando o menor número de cores possível, de forma que: (i) quaisquer dois vértices ou duas arestas adjacentes possuam cores distintas; (ii) cada vértice tenha cor diferente das cores das arestas que nele incidem; e, além disso, (iii) para quaisquer dois vértices adjacentes u,v pertencentes a V(G), o conjunto das cores que colorem u e suas arestas incidentes é distinto do conjunto das cores que colorem v e suas arestas incidentes. Denominamos esse menor número de cores para o qual um grafo admite uma coloração total semiforte como número cromático total semiforte. Zhang et al. também determinaram o número cromático total semiforte de algumas famílias clássicas de grafos e observaram que todas elas possuem uma coloração total semiforte com no máximo Delta(G)+3 cores. Com base nesta observação, eles conjeturaram que Delta(G)+3 cores seriam suficientes para construir uma coloração total semiforte para qualquer grafo simples G. Essa conjetura é denominada Conjetura da Coloração Total Semiforte e permanece aberta para grafos arbitrários, tendo sido verificada apenas para algumas famílias de grafos. Nesta dissertação, apresentamos uma resenha dos principais resultados existentes envolvendo a coloração total semiforte. Além disso, determinamos o número cromático total semiforte para as seguintes famílias: os grafos simples com Delta(G)=3 e sem vértices adjacentes de grau máximo; os snarks-flor; os snarks de Goldberg; os snarks de Blanusa generalizados; os snarks de Loupekine LP1; e os grafos equipartidos completos de ordem par. Verificamos que os grafos destas famílias possuem número cromático total semiforte menor ou igual a Delta(G)+2. Investigamos também a coloração total semiforte dos grafos tripartidos e dos grafos equipartidos completos de ordem ímpar e verificamos que os grafos destas famílias possuem número cromático total semiforte menor ou igual a Delta(G)+3. Os resultados obtidos confirmam a validade da Conjetura da Coloração Total Semiforte para todas as famílias consideradas nesta dissertação / Abstract: The adjacent-vertex-distinguishing-total-colouring (AVD-total-colouring) problem was introduced and studied by Zhang et al. around 2005. This problem consists in associating colours to the vertices and edges of a graph G=(V(G),E(G)) using the least number of colours, such that: (i) any two adjacent vertices or adjacent edges receive distinct colours; (ii) each vertex receive a colour different from the colours of its incident edges; and (iii) for any two adjacent vertices u,v of G, the set of colours that color u and its incident edges is distinct from the set of colours that color v and its incident edges. The smallest number of colours for which a graph G admits an AVD-total-colouring is named its AVD-total chromatic number. Zhang et al. determined the AVD-total chromatic number for some classical families of graphs and noted that all of them admit an AVD-total-colouring with no more than Delta(G)+3 colours. Based on this observation, the authors conjectured that Delta(G)+3 colours would be sufficient to construct an AVD-total-colouring for any simple graph G. This conjecture is called the AVD-Total-Colouring Conjecture and remains open for arbitrary graphs, having been verified for a few families of graphs. In this dissertation, we present an overview of the main existing results related to the AVD-total-colouring of graphs. Furthermore, we determine the AVD-total-chromatic number for the following families of graphs: simple graphs with Delta(G)=3 and without adjacent vertices of maximum degree; flower-snarks; Goldberg snarks; generalized Blanusa snarks; Loupekine snarks; and complete equipartite graphs of even order. We verify that the graphs of these families have AVD-total-chromatic number at most Delta(G)+2. Additionally, we verify that the AVD-Total-Colouring Conjecture is true for tripartite graphs and complete equipartite graphs of odd order. These results confirm the validity of the AVD-Total-Colouring Conjecture for all the families considered in this dissertation / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
6

Problemas em grafos com poucos P4's em grafos indiferença / Problems on graphs with few P4's and indifference graphs

Pedrotti, Vagner, 1980- 19 August 2018 (has links)
Orientador: Célia Picinin de Mello / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-19T10:47:23Z (GMT). No. of bitstreams: 1 Pedrotti_Vagner_D.pdf: 2015411 bytes, checksum: 4a6917f5811bde65dedbf0f7ab2577c5 (MD5) Previous issue date: 2011 / Resumo: Nesta tese de doutoramento sáo considerados três problemas em grafos, para os quais sáo obtidos resultados quando a entrada é restrita a algumas classes. Todos os problemas sáo problemas de otimização combinatória sobre grafos simples e apresentam diferentes classificações de complexidade. Em dois casos, o estudo focou classes de grafos com "poucos iYs" e ° uso da decomposição modular. No último caso, considerou-se uma subclasse dos grafos de intervalos e a aplicação de uma técnica conhecida como pullback. O primeiro problema estudado é o Problema dos Separadores Minimais, para o qual são conhecidos algoritmos polinomiais em toda classe de grafos que possuir um número polinomial de separadores minimais. Serão dados, como contribuição deste trabalho, um algoritmo linear para listar os separadores minimais de grafos P4-carregados estendidos e limitantes justos no número e tamanho dos separadores minimais destes grafos, bem como de algumas de suas subclasses, P4-carregada, P4-arrumada e P4-íeve. Estes resultados estendem um algoritmo anterior para grafos P4-esparsos, ao mesmo tempo que incluem estas classes de grafos entre as que possuem um número de separadores minimais limitado por um função linear no número de vértices do grafo. Em seguida, será tratado o Problema de Empacotamento de Cliques, uma extensão do problema de emparelhamento máximo. Para a maioria das classes de grafos mais importantes, o problema é NP-Difícil. A contribuição apresentada resolve este problema em tempo polinomial (para qualquer tamanho fixo de clique) em grafos P4-arrumados, através de uma técnica similar a utilizada para os cografos. Infelizmente, para as superclasses mais estudadas da classe P4-arrumada, este problema é NP-Difícil, o que é um indício de que a técnica utilizada foi totalmente aproveitada em relação ás classes com poucos _P4's. Por fim, será estudado o Problema da Coloração Total Forte, uma variação do problema clássico da coloração total, que foi introduzido há pouco tempo e ainda tem sua complexidade computacional desconhecida. Como esperado, existem algoritmos polinomiais apenas para classes bastante simples de grafos. Além da complexidade, outro importante ponto em aberto para o problema é a conjectura de que o número de cores necessárias na solução do problema para um grafo G seria limitado por A(G) + 3. A técnica do pullback, já utilizada para os Problemas de Coloração de Arestas e Coloração Total em grafos dualmente cordais será estendida, resultando em um algoritmo linear para grafos indiferença (também conhecido como grafos de intervalos próprios). Este algoritmo produz uma solução que valida a conjectura nesta classe de grafos. Estas contribuições confirmam a importância da decomposição modular em algoritmos para classes de grafos com "poucos iYs" e ampliam o uso da técnica do pullback para variações dos problemas clássicos de coloração / Abstract: In this doctoral thesis, three problems on graphs are considered and results are given for them when the input is resctricted to some graph classes. All the problems are combinatorial optimization problems on simple graphs and have distinct classihcations of complexity. In two of them, the research focused on graph classes known as graphs with "few iVs" and on the use of modular decomposition on such graphs. In the last problem, a subclass of interval graphs was studied with respect to the application of the technique known as pullback. The first problem studied is the Minimal Separator Problem. For this problem, there exists polynomial time algorithms for every class of graphs which has a polynomial number of minimal separators. A linear-time algorithm, that lists all minimal separators of extended iVladen graphs, is presented. Moreover, tight bounds on the number and on the total size of minimal separators are given for extended iVladen graphs and for some of their subclasses: the iVladen, iVtidy, and iVlite graphs. This result extends a previous algorithm for iVspai'se graphs and gives, for the above classes, better bounds on the number of minimal separators that were already known to be polynomial. Then, the Clique Packing Problem is analyzed. The problem is an extension of the classical Maximum Matching Problem and is NP-Hard for almost all graph classes. The contribution presented solves the problem in polynomial time (for any fixed clique size) in iVtidy graphs through a technique similar to that used for cographs. However, the most well-known superclasses of iVtidy graphs contains split graphs, for which this problem is NP-Hard. This is an evidence that the technique was fully explored with respect of graph classes with few iVs. At last, the Strong Total Coloring Problem is considered. It is a recently introduced variation of the classical Total Coloring Problem and its complexity is still unknown. As expected, there are quite few graph classes for which the problem has a polynomial time algorithm. Besides its complexity, another important open question for this problem is a conjecture which states that A(G) + 3 colors are sufficient for coloring any graph G. A known technique, called pullback, used for edge and total coloring of dually chordal graphs is extended to derive a linear time algorithm for indifference graphs (also known as proper interval graphs). This algorithm produces solutions that validate the conjecture for this graph class. These contributions assert the importance of modular decomposition in algorithms for graph classes with "few P4's" and broaden the pullback technique to variations of classical coloring problems / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
7

Técnicas e algoritmos de Link Analysis na geração de medidas de similaridade / Link analysis techniques and algorithms for similarity measures

Rezende, Rodrigo Carvalho, 1981- 22 August 2018 (has links)
Orientadores: Siome Klein Goldenstein, Ricardo da Silva Torres / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-22T01:52:05Z (GMT). No. of bitstreams: 1 Rezende_RodrigoCarvalho_M.pdf: 3704794 bytes, checksum: 387c6f6ddc154e08ed8277b50d9a99df (MD5) Previous issue date: 2012 / Resumo: Esta dissertação estuda técnicas de Link Analysis para o problema de se calcular similaridade entre artigos acadêmicos organizados em uma biblioteca digital. Neste trabalho construímos um conjunto de dados e desenvolvemos um protocolo experimental para avaliar a eficácia das técnicas desenvolvidas. Para lidar com a alta complexidade dos algoritmos de similaridade para o nosso conjunto de dados, estudamos técnicas de amostragem de grafos e avaliamos objetivamente a qualidade das amostras geradas por estes métodos. A partir deste estudo, propomos um novo algoritmo de amostragem baseado na técnica Forest Fire. Experimentos realizados demonstram a superioridade do algoritmo de amostragem proposto. Além disso, apresenta-se uma nova meta-função de similaridade para artigos acadêmicos que considera apenas a informação de citação entre artigos, sem levar em conta o conteúdo textual e seus metadados para dizer o quanto um artigo é similar a outro. Esta meta-função transforma medidas de similaridade locais, como o coeficiente Jaccard e Adamic/Adar, em medidas recursivas, cuja similaridade depende recursivamente da similaridade de outros artigos relacionados, explorando a ideia de que dois artigos são mais similares na medida em que estão associados a artigos que também são similares. Para avaliação de eficácia do método proposto, criamos um gabarito de similaridade, que deriva da classificação hierárquica dos artigos no sistema de classificação de 1998 da Association for Computer Machinery (ACM). Este gabarito cria uma noção de similaridade tal que dois artigos são mais similares na medida em que são classificados em classes similares, isto é, que estão em classes hierarquicamente próximas. Experimentos são conduzidos no grafo de citação de artigos, extraído da biblioteca digital da ACM, contendo um subconjunto de 122.774 artigos e 523.699 arestas de citações, e comparam esta nova meta função de similaridade com o gabarito de similaridade e revelam que esta gera melhor eficácia que as medidas de similaridade locais consideradas. Além disso, avaliamos esta técnica na atividade prática de busca, por exemplo, e confirmamos que este meta-algoritmo melhora a eficácia das medidas locais consideradas / Abstract: These work studies techniques of Link Analysis used to address the problem of computing the similarity between academic papers organized in a digital library. We constructed a bibliographic dataset and developed an experimental protocol to evaluate the effectiveness of these techniques. To handle the high complexity of the similarity algorithms applied to our dataset, we study graph sampling techniques and evaluate the quality of the samples generated by these methods. This study lead to the proposal of a new sampling algorithm based on an existing technique named Forest Fire. Experiments results demonstrate the superiority of the proposed sampling algorithm. Moreover, we present a new metasimilarity function for scholarly articles that considers only the citation information, which does not take into account their textual content and its metadata, to compute how much an article is similar to another. This meta-function transforms local similarity measures, such as the Jaccard coefficient and Adamic/Adar, into recursive measures, whose similarity score recursively depends on the similarity of other related articles, exploring the idea that two articles are more similar if they are associated with articles which are also similar. To evaluate the effectiveness of the proposed method, we constructed a groundtruth of similarity, which derives from a hierarchical classification system of the Association for Computer Machinery (ACM). This groundtruth creates a notion of similarity such that two articles are more similar if they fall into similar classes (those that are hierarchically close to each other). Experiments are conducted in the citation graph, extracted from the ACM Digital Library, containing a subset of 122,774 articles and 523,699 citation edges. Obtained results demonstrate that this new meta-similarity function outperforms baselines. Furthermore, these results are confirmed in other experiments concerning the use of the proposed meta-functions in similarity search tasks / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
8

O problema do multicorte dirigido mínimo / The directed multicut problem

Gutierrez Alva, Juan Gabriel 07 December 2012 (has links)
O Problema do Multicorte Dirigido Mínimo é um problema clássico em otimização combinatória. Ele é NP-difícil mesmo para instâncias muito simples. Este trabalho faz uma análise dos algoritmos exatos e de aproximação para resolver o problema. Também implementa alguns desses algoritmos e compara seus desempenhos. / The directed multicut problem is a classical problem in combinatorial optimization. It is NP-hard even for very simple families of instances. This work makes an analysis of the exact and approximation algorithms for the problem. It also implements some of these algorithms and compares their performances.
9

Um estudo computacional sobre o problema de decomposiÃÃo de grafos em Ãrvore / A computational study of the tree decomposition problem

Ana Shirley Ferreira da Silva 31 August 2005 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / A noÃÃo de DecomposiÃÃo em Ãrvore foi introduzida por Robertson e Seymour em sua sÃrie de artigos sobre menores de grafos e pode ser definida, intuitivamente, como uma organizaÃÃo dos vÃrtices e arestas do grafo em uma estrutura de Ãrvore, sendo a largura da decomposiÃÃo igual ao tamanho do maior subconjunto de vÃrtices relacionado a um nà desta estrutura menos um. A largura mÃnima de uma decomposiÃÃo em Ãrvore de um grafo G à chamada de largura em Ãrvore de G. VÃrios problemas difÃceis podem ser resolvidos em tempo polinomial, dada uma decomposiÃÃo em Ãrvore de largura limitada, como, por exemplo, Ciclo Hamiltoniano, Conjunto Independente MÃximo, Isomorfismo, ColoraÃÃo de VÃrtices, etc. A complexidade dos algoritmos que resolvem tais problemas sÃo geralmente exponenciais na largura da decomposiÃÃo fornecida. Logo, à esperado que encontrar uma decomposiÃÃo de largura mÃnima seja um problema difÃcil. De fato, Arnborg, Corneil e Proskurowski [2] mostraram que o problema à NP - difÃcil. O problema de encontrar a largura em Ãrvore de um grafo qualquer à o objeto de estudo da presente dissertaÃÃo de mestrado. Uma restriÃÃo desse problema à o de decidir, para um inteiro k fixo, se a largura em Ãrvore de G à no mÃximo k. Apresentamos a prova de que o problema para k fixo pode ser resolvido polinomialmente. Na Ãltima dÃcada foram propostas vÃrias heurÃsticas que fornecem limites superiores para o problema [3, 10], heurÃsticas para o cÃlculo de limites inferiores [6, 8, 11], alÃm de mÃtodos enumerativos [5] e algoritmos aproximativos [1, 7, 4]. PorÃm, nenhum resultado obtido pode ser considerado bom, uma vez que nÃo existe um benchmark para o qual se conhece a largura em Ãrvore e os limites inferiores e superiores tÃm se mostrado muito distantes. AlÃm disso, o algoritmo enumerativo existente mostrou-se ineficiente mesmo para o problema de decisÃo com k fixo em valores pequenos (por exemplo, k = 4) [12]. à neste quadro que propomos um mÃtodo enumerativo para o problema. Na verdade, abordamos o problema de triangularizaÃÃo, que à equivalente ao problema de decomposiÃÃo em Ãrvore. Isso nos permitiu a proposta de uma nova representaÃÃo para uma soluÃÃo do problema que utiliza o conceito de ordens totais. Uma vez que as soluÃÃes podem assim ser representadas, um algoritmo que enumere as extensÃes totais de uma dada ordem parcial pode ser utilizado para enumerar todas as soluÃÃes do problema, bastando que fornecemos uma ordem que contenha apenas os pares reflexivos vv, onde v à um vÃrtice do grafo de entrada. O mÃtodo enumerativo proposto à uma modificaÃÃo do algoritmo de CorrÃa e Szwarcfiter [9]. Esta modificaÃÃo faz com que apenas as extensÃes totais da ordem fornecida seja enumerada. O algoritmo apresenta duas principais vantagens com relaÃÃo ao mÃtodo enumerativo proposto por Bodlaender e Kloks: pode ser utilizado juntamente com o mÃtodo âbranch and boundâ; e pode enumerar um sub-espaÃo de soluÃÃes, o que pode ser Ãtil caso se conheÃa algumas relaÃÃes existentes na soluÃÃo Ãtima, ou mesmo para investigar determinados sub-espaÃos de soluÃÃes. Implementamos e testamos o algoritmo proposto, aplicando o mÃtodo âbranch and boundâ e restringindo o espaÃo de soluÃÃes. As ordens parciais utilizadas para definir os sub-espaÃos explorados foram obtidas baseando-se nas heurÃsticas de limite superior que utilizam rotulaÃÃo. Infelizmente, nÃo obtivemos bons resultados, pois, mesmo restringindo o espaÃo de busca, a quantidade de nÃs gerados da Ãrvore de âbranch and boundâ foi muito grande, excedendo a quantidade de memÃria disponÃvel da mÃquina utilizada para os testes. No texto da dissertaÃÃo apresentamos tambÃm um estudo da complexidade do problema, um algoritmo para calcular uma decomposiÃÃo em Ãrvore Ãtima de um grafo cordal, alÃm das vÃrias heurÃsticas para o cÃlculo de limites superiores e inferiores existentes. AlÃm disso, implementamos e testamos as heurÃsticas de limite superior que utilizam rotulaÃÃo e uma heurÃstica GRASP, tendo sido o primeiro estudo de uma aplicaÃÃo da meta-heurÃstica GRASP para o problema de decomposiÃÃo em Ãrvore. / The notion of Tree Decomposition was introduced by Robertson and Seymour in their seris of articles about graph minors and can be intuitively seen as an organization of the vertices and edges of the graph in a tree structure, being the treewidth equal to the size of the largest subset of vertices minus one. The minimum treewidth over all tree decompositions of a graph gives us the treewidth of the graph. Many hard problems can be polinomially solved for a graph G if a tree decomposition with bounded treewidth of G is given. For instance, hamiltonian cycle, maximum independent set isomorphism, vertex coloring, etc. The complexity of the algorithm that solves such problems are generally exponential on the width of the given tree decomposition. So, we can expect that finding a tree decomposition of minimum width is hard. In fact, Arnborg, Corneil and Proskurowski [2] showed that the problem os NP-hard. The problem of finding the treewidth of a graph is the subject of this thesis. The decision variation of the problem is, given a graph G and for a fixed integer k, deciding if the treewidth of G is at most k. We discuss a proof that the decision problem can be polynomially solved. In the last decade were proposed many heuristics for computing upper bounds [3, 10], lower bounds [6, 8, 11], enumeration methods [5] and approximative algorithms [1, 7, 4]. However, none of these results can be considered as good ones, since there is no benchmarks for with the treewidth is known, as well as the difference between the lower and upper bounds for the existing benchmarks is very large. Additionally, the enumeration method was showed to be inefficient even for the decision problem with k fixed in small values (e.g., k = 4) [12]. So, we propose another enumeration method for the problem that can be used along with branch and bound techniques. Actually, we work with the triangulation problem that is equivalent to the tree decomposition problem. We propose a new representation of a solution, wich uses the concept of total orders. Once a solution ca be represented like that, an algorithm that enumerates all the total extensions of a given partial order can be used to enumerate all solutions for the tree decomposition problem, as long as we offer the partial order containing only the reflexive pairs vv, where v is a vertex of the input graph. The proposed enumeration method is a modification of the CorrÃa and Szwarcfiter algorithm [9]. This modification allows only the total extensions to be enumerated. The algorithm presents two principal advantages over the Bodlander and Kloks method: it can be used in conjunction with the Branch and Bound method; and it can enumerate a subspace of solutions, what can be useful if we know some existing relations in an optimal solution, or even to investigate such subspaces in order to characterize them. We have implemented and tested the proposed algorithm, applying the branch and bound method and restricting the subspace of solutions. The partial orders used to define the explored subspaces were obtained based on the labeling heuristics for finding upper bounds. Unfortunately, we did not obtain good results because, even when we restricted the subspace of solutions to be searched, the number of nodes generated in the branch and bound tree was too large, exceeding the machineâs memory capacity. In the text, we also present the proof of the NP-hardness of the problem, an algorithm to compute an optimal decompostion of a chordal graph, and also the many existing heuristics to compute lower and upper bounds. In addition, we implemented and tested the labeling heuristics for upper bounds and a GRASP heuristic, being the first application of a GRASP meta-heuristic to the problem.
10

Um estudo computacional sobre o problema de decomposição de grafos em árvore / A computational study of the tree decomposition problem

Silva, Ana Shirley Ferreira da January 2005 (has links)
SILVA, Ana Shirley Ferreira da. Um estudo computacional sobre o problema de decomposição de grafos em árvore. 2005. 103 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2005. / Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-05-24T19:54:20Z No. of bitstreams: 1 2005_dis_asfsilva.pdf: 965121 bytes, checksum: 0620082b39fd950bff00ce625f59f846 (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-05-24T19:54:44Z (GMT) No. of bitstreams: 1 2005_dis_asfsilva.pdf: 965121 bytes, checksum: 0620082b39fd950bff00ce625f59f846 (MD5) / Made available in DSpace on 2016-05-24T19:54:44Z (GMT). No. of bitstreams: 1 2005_dis_asfsilva.pdf: 965121 bytes, checksum: 0620082b39fd950bff00ce625f59f846 (MD5) Previous issue date: 2005 / The notion of Tree Decomposition was introduced by Robertson and Seymour in their seris of articles about graph minors and can be intuitively seen as an organization of the vertices and edges of the graph in a tree structure, being the treewidth equal to the size of the largest subset of vertices minus one. The minimum treewidth over all tree decompositions of a graph gives us the treewidth of the graph. Many hard problems can be polinomially solved for a graph G if a tree decomposition with bounded treewidth of G is given. For instance, hamiltonian cycle, maximum independent set isomorphism, vertex coloring, etc. The complexity of the algorithm that solves such problems are generally exponential on the width of the given tree decomposition. So, we can expect that finding a tree decomposition of minimum width is hard. In fact, Arnborg, Corneil and Proskurowski [2] showed that the problem os NP-hard. The problem of finding the treewidth of a graph is the subject of this thesis. The decision variation of the problem is, given a graph G and for a fixed integer k, deciding if the treewidth of G is at most k. We discuss a proof that the decision problem can be polynomially solved. In the last decade were proposed many heuristics for computing upper bounds [3, 10], lower bounds [6, 8, 11], enumeration methods [5] and approximative algorithms [1, 7, 4]. However, none of these results can be considered as good ones, since there is no benchmarks for with the treewidth is known, as well as the difference between the lower and upper bounds for the existing benchmarks is very large. Additionally, the enumeration method was showed to be inefficient even for the decision problem with k fixed in small values (e.g., k = 4) [12]. So, we propose another enumeration method for the problem that can be used along with branch and bound techniques. Actually, we work with the triangulation problem that is equivalent to the tree decomposition problem. We propose a new representation of a solution, wich uses the concept of total orders. Once a solution ca be represented like that, an algorithm that enumerates all the total extensions of a given partial order can be used to enumerate all solutions for the tree decomposition problem, as long as we offer the partial order containing only the reflexive pairs vv, where v is a vertex of the input graph. The proposed enumeration method is a modification of the Corrêa and Szwarcfiter algorithm [9]. This modification allows only the total extensions to be enumerated. The algorithm presents two principal advantages over the Bodlander and Kloks method: it can be used in conjunction with the Branch and Bound method; and it can enumerate a subspace of solutions, what can be useful if we know some existing relations in an optimal solution, or even to investigate such subspaces in order to characterize them. We have implemented and tested the proposed algorithm, applying the branch and bound method and restricting the subspace of solutions. The partial orders used to define the explored subspaces were obtained based on the labeling heuristics for finding upper bounds. Unfortunately, we did not obtain good results because, even when we restricted the subspace of solutions to be searched, the number of nodes generated in the branch and bound tree was too large, exceeding the machine’s memory capacity. In the text, we also present the proof of the NP-hardness of the problem, an algorithm to compute an optimal decompostion of a chordal graph, and also the many existing heuristics to compute lower and upper bounds. In addition, we implemented and tested the labeling heuristics for upper bounds and a GRASP heuristic, being the first application of a GRASP meta-heuristic to the problem. / A noção de Decomposição em árvore foi introduzida por Robertson e Seymour em sua série de artigos sobre menores de grafos e pode ser definida, intuitivamente, como uma organização dos vértices e arestas do grafo em uma estrutura de árvore, sendo a largura da decomposição igual ao tamanho do maior subconjunto de vértices relacionado a um nó desta estrutura menos um. A largura mínima de uma decomposição em árvore de um grafo G é chamada de largura em árvore de G. Vários problemas difíceis podem ser resolvidos em tempo polinomial, dada uma decomposição em árvore de largura limitada, como, por exemplo, Ciclo Hamiltoniano, Conjunto Independente Máximo, Isomorfismo, Coloração de Vértices, etc. A complexidade dos algoritmos que resolvem tais problemas são geralmente exponenciais na largura da decomposição fornecida. Logo, é esperado que encontrar uma decomposição de largura mínima seja um problema difícil. De fato, Arnborg, Corneil e Proskurowski [2] mostraram que o problema é NP - difícil. O problema de encontrar a largura em árvore de um grafo qualquer é o objeto de estudo da presente dissertação de mestrado. Uma restrição desse problema é o de decidir, para um inteiro k fixo, se a largura em árvore de G é no máximo k. Apresentamos a prova de que o problema para k fixo pode ser resolvido polinomialmente. Na última década foram propostas várias heurísticas que fornecem limites superiores para o problema [3, 10], heurísticas para o cálculo de limites inferiores [6, 8, 11], além de métodos enumerativos [5] e algoritmos aproximativos [1, 7, 4]. Porém, nenhum resultado obtido pode ser considerado bom, uma vez que não existe um benchmark para o qual se conhece a largura em árvore e os limites inferiores e superiores têm se mostrado muito distantes. Além disso, o algoritmo enumerativo existente mostrou-se ineficiente mesmo para o problema de decisão com k fixo em valores pequenos (por exemplo, k = 4) [12]. É neste quadro que propomos um método enumerativo para o problema. Na verdade, abordamos o problema de triangularização, que é equivalente ao problema de decomposição em árvore. Isso nos permitiu a proposta de uma nova representação para uma solução do problema que utiliza o conceito de ordens totais. Uma vez que as soluções podem assim ser representadas, um algoritmo que enumere as extensões totais de uma dada ordem parcial pode ser utilizado para enumerar todas as soluções do problema, bastando que fornecemos uma ordem que contenha apenas os pares reflexivos vv, onde v é um vértice do grafo de entrada. O método enumerativo proposto é uma modificação do algoritmo de Corrêa e Szwarcfiter [9]. Esta modificação faz com que apenas as extensões totais da ordem fornecida seja enumerada. O algoritmo apresenta duas principais vantagens com relação ao método enumerativo proposto por Bodlaender e Kloks: pode ser utilizado juntamente com o método “branch and bound”; e pode enumerar um sub-espaço de soluções, o que pode ser útil caso se conheça algumas relações existentes na solução ótima, ou mesmo para investigar determinados sub-espaços de soluções. Implementamos e testamos o algoritmo proposto, aplicando o método “branch and bound” e restringindo o espaço de soluções. As ordens parciais utilizadas para definir os sub-espaços explorados foram obtidas baseando-se nas heurísticas de limite superior que utilizam rotulação. Infelizmente, não obtivemos bons resultados, pois, mesmo restringindo o espaço de busca, a quantidade de nós gerados da árvore de “branch and bound” foi muito grande, excedendo a quantidade de memória disponível da máquina utilizada para os testes. No texto da dissertação apresentamos também um estudo da complexidade do problema, um algoritmo para calcular uma decomposição em árvore ótima de um grafo cordal, além das várias heurísticas para o cálculo de limites superiores e inferiores existentes. Além disso, implementamos e testamos as heurísticas de limite superior que utilizam rotulação e uma heurística GRASP, tendo sido o primeiro estudo de uma aplicação da meta-heurística GRASP para o problema de decomposição em árvore.

Page generated in 0.1018 seconds