• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de l'opéron métabolique fru2 de Streptococcus agalactiae : phylogénie, induction, et régulation / Characterization of the Streptococcus agalactia fru carbohydrate metabolic operon : phylogeny, induction and regulation

Patron, Kévin 11 December 2015 (has links)
Streptococcus agalactiae est la première cause d’infections néonatales, et est aussi un pathogène émergent chez l’adulte immunodéprimé. L’objectif de ce travail de thèse a été de caractériser l’opéron métabolique fru2 de S. agalactiae (i) en étudiant sa phylogénie, (ii) en identifiant ses inducteurs, et (iii) en élaborant son schéma de régulation. Cet opéron est composé de 7 gènes qui codent un activateur transcriptionnel de la famille DeoR-like (Fru2R), un transporteur PTS (PTSFru2), et trois enzymes qui sont potentiellement impliquées dans la voie non oxydative des pentoses phosphates. Nous avons mis en évidence que cet opéron avait été acquis au cours de l’évolution, et n’était présent que chez les souches de complexes clonaux responsables d’infections chez l’adulte immunodéprimé et la personne âgée. Nous avons ensuite montré que certains milieux complexes, sources de carbone, et liquides biologiques humains permettaient l’activation de cet opéron. Ensuite, nous avons caractérisé le rôle et fonctionnement de la protéine Fru2R (i) en montrant son rôle d’activateur transcriptionnel, (ii) en identifiant les acides aminés essentiels à son activité, et (iii) en démontrant sa capacité à se fixer au niveau de la région promotrice de fru2. / Streptococcus agalactiae, commonly known as group B streptococcus, is a leading cause of neonatal morbidity and mortality. It is also an emergent pathogen in immunocompromised and elderly adults. The objective of this study was to characterize the phylogeny, the induction and the regulation of the S. agalactiae fru2 operon. This operon encodes a PTS transporter of the fructose-mannitol family, a transcriptional activator of the DeoR-like family, an allulose-6 phosphate-3-epimerase, a transaldolase and a transketolase. Our results, concerning the phylogeny, indicate that fru2 was acquired during the evolution of S. agalactiae. Then, we highlighted that the fru2 promoter was active in complex medium, in chemically defined medium with various carbon sources and in human biological fluids. Then, we demonstrated that the Fru2R protein (i) was a transcriptional activator, (ii) contains amino acids which are essential for the activity of the Fru2R and fru2 promoter, and (iii) interacts with the fru2 intergenic region. Then, we demonstrated the role of the PTSFru2 proteins of S. agalactiae A909 fru2.
2

The anti-tumor efficacy of 2-deoxyglucose and D-allose are enhanced with p38 inhibition in pancreatic and ovarian cell lines

Malm, S. W., Hanke, N. T., Gill, A., Carbajal, L., Baker, A. F. January 2015 (has links)
PURPOSE: The anti-tumor activity of glucose analogs 2-deoxy-glucose (2-DG) and D-allose was investigated alone or in combination with p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 or platinum analogs as a strategy to pharmacologically target glycolytic tumor phenotypes. METHODS: Hypoxia inducible factor-1 alpha (HIF-1alpha) protein accumulation in pancreatic cell lines treated with SB202190 alone and in combination with glucose analogs was analyzed by Western blot. HIF-1alpha transcriptional activity was measured in MIA PaCa-2 cells stably transfected with a hypoxia response element luciferase reporter following treatment with glucose analogs alone, and in combination with SB202190. Induction of cleaved poly(ADP-ribose) polymerase (PARP) was measured by Western blot in the MIA PaCa-2 cells. In vitro anti-proliferative activity of 2-DG and D-allose alone, or in combination with oxaliplatin (pancreatic cell lines), cisplatin (ovarian cell lines), or with SB202190 were investigated using the MTT assay. RESULTS: SB202190 decreased HIF-1alpha protein accumulation and transcriptional activity. 2-DG demonstrated greater anti-proliferative activity than D-allose. Pre-treatment with SB202190 enhanced activity of both 2-DG and D-allose in MIA PaCa-2, BxPC-3, ASPC-1, and SK-OV-3 cells. The combination of D-allose and platinum agents was additive to moderately synergistic in all but the OVCAR-3 and HEY cells. SB202190 pre-treatment further enhanced activity of D-allose and 2-DG with platinum agents in most cell lines investigated. CONCLUSIONS: SB202190 induced sensitization of tumor cells to 2-DG and D-allose may be partially mediated by inhibition of HIF-1alpha activity. Combining glucose analogs and p38 MAPK inhibitors with chemotherapy may be an effective approach to target glycolytic tumor phenotypes.
3

Structural and Functional Studies of Ribose-5-phosphate isomerase B

Roos, Annette K. January 2007 (has links)
<p>Ribose 5-phosphate isomerase (Rpi) is one of the major enzymes of the pentose phosphate pathway, where it catalyses the inter-conversion of ribose 5-phosphate (R5P) and ribulose 5-phosphate. Two forms of this isomerase with no significant amino acid sequence similarity exist, RpiA and RpiB. This thesis describes RpiB from the organisms <i>Mycobacterium tuberculosis</i> (<i>Mt</i>) and <i>Escherichia coli</i> (<i>Ec</i>) from a structural and functional point of view.</p><p>Since the <i>E. coli</i> genome encodes both an RpiA and an RpiB, which generally is not expressed, it has been proposed that <i>Ec</i>RpiB has a different role as an allose-6-phosphate isomerase. Activity measurements presented here show that <i>Ec</i>RpiB does have this second activity. </p><p>In the <i>M. tuberculosis</i> genome there is only a gene for RpiB. The crystal structure of <i>Mt</i>RpiB was solved in complex with several different inhibitors designed to mimic the reaction intermediate as well as with the substrate, R5P. The organisation of the active site in these structures could be used to derive the reaction mechanism for <i>Mt</i>RpiB and for other RpiBs in general. Activity measurements of <i>Mt</i>RpiB showed that it can catalyse the R5P isomerisation, but not the allose 6-phosphate reaction. Differences observed in the active site between <i>Ec</i>RpiB and <i>Mt</i>RpiB explain these kinetic results. </p><p>Activity measurements and a structure of an <i>Ec</i>RpiB mutant, where histidine99 was changed to asparagine, implies that RpiB catalyses the first step of the reaction in which the sugar ring must be opened, and gives a possible explanation for how this could occur. </p><p>Inhibition studies have uncovered a compound that selectively inhibits <i>Mt</i>RpiB over RpiA from spinach, which is homologous to the human RpiA. Differences in the inhibition patterns and active site residues of these two species’ Rpi may provide information for future virtual screening approaches, with the aim of discovering new anti-tuberculosis agents.</p>
4

Structural and Functional Studies of Ribose-5-phosphate isomerase B

Roos, Annette K. January 2007 (has links)
Ribose 5-phosphate isomerase (Rpi) is one of the major enzymes of the pentose phosphate pathway, where it catalyses the inter-conversion of ribose 5-phosphate (R5P) and ribulose 5-phosphate. Two forms of this isomerase with no significant amino acid sequence similarity exist, RpiA and RpiB. This thesis describes RpiB from the organisms Mycobacterium tuberculosis (Mt) and Escherichia coli (Ec) from a structural and functional point of view. Since the E. coli genome encodes both an RpiA and an RpiB, which generally is not expressed, it has been proposed that EcRpiB has a different role as an allose-6-phosphate isomerase. Activity measurements presented here show that EcRpiB does have this second activity. In the M. tuberculosis genome there is only a gene for RpiB. The crystal structure of MtRpiB was solved in complex with several different inhibitors designed to mimic the reaction intermediate as well as with the substrate, R5P. The organisation of the active site in these structures could be used to derive the reaction mechanism for MtRpiB and for other RpiBs in general. Activity measurements of MtRpiB showed that it can catalyse the R5P isomerisation, but not the allose 6-phosphate reaction. Differences observed in the active site between EcRpiB and MtRpiB explain these kinetic results. Activity measurements and a structure of an EcRpiB mutant, where histidine99 was changed to asparagine, implies that RpiB catalyses the first step of the reaction in which the sugar ring must be opened, and gives a possible explanation for how this could occur. Inhibition studies have uncovered a compound that selectively inhibits MtRpiB over RpiA from spinach, which is homologous to the human RpiA. Differences in the inhibition patterns and active site residues of these two species’ Rpi may provide information for future virtual screening approaches, with the aim of discovering new anti-tuberculosis agents.

Page generated in 0.0407 seconds