• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 12
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 54
  • 54
  • 20
  • 14
  • 12
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

High-Temperature Corrosion of Aluminum Alloys: Oxide-Alloy Interactions and Sulfur Interface Chemistry

Addepalli, Swarnagowri 12 1900 (has links)
The spallation of aluminum, chromium, and iron oxide scales is a chronic problem that critically impacts technological applications like aerospace, power plant operation, catalysis, petrochemical industry, and the fabrication of composite materials. The presence of interfacial impurities, mainly sulfur, has been reported to accelerate spallation, thereby promoting the high-temperature corrosion of metals and alloys. The precise mechanism for sulfur-induced destruction of oxides, however, is ambiguous. The objective of the present research is to elucidate the microscopic mechanism for the high-temperature corrosion of aluminum alloys in the presence of sulfur. Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and scanning tunneling microscopy (STM) studies were conducted under ultrahigh vacuum (UHV) conditions on oxidized sulfur-free and sulfur-modified Al/Fe and Ni3Al(111). Evaporative deposition of aluminum onto a sulfur-covered iron surface results in the insertion of aluminum between the sulfur adlayer and the substrate, producing an Fe-Al-S interface. Aluminum oxidation at 300 K is retarded in the presence of sulfur. Oxide destabilization, and the formation of metallic aluminum are observed at temperatures > 600 K when sulfur is located at the Al2O3-Fe interface, while the sulfur-free interface is stable up to 900 K. In contrast, the thermal stability (up to at least 1100 K) of the Al2O3 formed on an Ni3Al(111) surface is unaffected by sulfur. Sulfur remains at the oxide-Ni3Al(111) interface after oxidation at 300 K. During annealing, aluminum segregation to the g ¢ -Al2O3-Ni3Al(111) interface occurs, coincident with the removal of sulfur from the interfacial region. A comparison of the results observed for the Al2O3/Fe and Al2O3/Ni3Al systems indicates that the high-temperature stability of Al2O3 films on aluminum alloys is connected with the concentration of aluminum in the alloy.
42

Some corrosion problems associated with underwater turbines

Unknown Date (has links)
This thesis deals with corrosion problems of underwater turbines in marine environment. The effect of a tensile stress on the uniform corrosion rate of a metal bar is studied, and an analytical model predicting the time of service of a bar under a tensile load in a corrosive environment is proposed. Stress corrosion relationships are provided for different type of alloys, and different types of relationships. Dolinskii's and Gutman's models are studied and extended to a general order polynomial, along with a Least Square and Spline Interpolation of the experimental data. In a second part, the effect of the passive film, delaying the initiation of the corrosion process, is studied. Finally, an algorithm predicting the time of service of a cracked bar is provided, using the stress corrosion assumption, along with a validation using experimental data. / by Yohann Miglis. / Thesis (M.S.C.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
43

Short term observations of in vitro biocorrosion of two commonly used implant alloys

Lin, Hsin-Yi. January 2002 (has links)
Thesis (Ph. D.)--Mississippi State University. Department of Agricultural and Biological Engineering. / Title from title screen. Includes bibliographical references.
44

Corrosion behaviour of nickel-titanium shape memory alloys with copper and niobium additions.

Lethabane, Moipone Linda. January 2013 (has links)
M. Tech. Metallurgical Engineering. / Studies the corrosion behavior of sintered Ni-Ti shape memory alloys containing Cu and Nb additions.Objectives are: 1. Investigate structural and phased interactions occurring during the sintering of the allloys. 2. Study the effects of niobium and copper addition on the general corrosion behavior of the sintered nickel-titanium alloys in sodium chloride and sulphuric acid. 3. Study the effects of copper and niobium addition on localized corrosion behavior of the alloys in chloride environments.
45

A measurement technique for refractory erosion/corrosion in molten metals /

Holford, W. David (William David) January 1985 (has links)
No description available.
46

Korozní odolnost konstrukčních slitin hořčíku / Corrosion Resistance of Structural Magnesium Alloys

Tkacz, Jakub January 2014 (has links)
This thesis describes magnesium alloys, their properties and methods of their production. However, experimental part is focused on AZ91 magnesium alloy. Conversion coatings were prepared on the AZ91 surface – chromate coating, phosphate permanganate coating and fluoride coating. Corrosion resistance of the prepared coatings were compared by immersion tests and by potentiodynamic methods. Evaluation of corrosion resistance by immersion tests was successful only for phosphate permanganate coating. Only this coating was removed during cleaning of the samples. For comparison of corrosion resistance was important to find the correct procedures and optimize the measurements methods. For these purposes have been chosen galvanic zinc coating on steel sheets. Thickness of the zinc coating were 8 and 30 microns. This coatings provide uniform zinc surface without heterogenities which was important for the potentiodynamic measurements. After optimization methods for potentiodynamic measurements by galvanic zinc coatings have been measured magnesium alloy AZ91 uncoated and coated by conversion coatings. For uncoated AZ91 magnesium alloy was determined suitable method so called virgin cathodic curve. On the other hand, for the coated AZ91 magnesium alloys was determined suitable method so called combined curve, within which we measured cyclic voltammetry curve (± 5 mV) and then virgin anodic curve.
47

Laser Surface Modification of AZ31B Mg Alloy Bio-Implant Material

Wu, Tso-chang 08 1900 (has links)
Magnesium and its alloys are considered as the potential biomaterials due to their biocompatibility and biodegradable characteristics but suffer from poor corrosion performance. Various surface modification techniques are employed to improve their corrosion resistance. In present case, laser surface melting was carried out on AZ31B Mg alloy with various laser energy densities using a continuous wave ytterbium laser. Effect of laser treatment on phase and microstructure evolution was evaluated by X ray diffraction and scanning electron microscopy. Multi-physics thermal model predicted time temperature evolution along the depth of the laser treatment zone. Additionally, electrochemical method and bio-immersion test were employed to evaluate the corrosion behavior in simulated body fluid medium. Microstructure revealed grain refinement and even distribution of Mg17Al12 phase along the grain boundary for laser treated samples leading to substantial enhancement in the corrosion resistance of the laser treated samples compared to the untreated alloy. The laser processed samples also possessed a superior wettability in SBF solution than the untreated sample. This was further reflected in enhanced bio-integration behavior of laser processed samples. By changing the parameters of laser processing such as power, scanning speed, and fill spacing, a controllable corrosion resistance and bioactivity/biocompatibility of the implant material was achieved.
48

A measurement technique for refractory erosion/corrosion in molten metals /

Holford, W. David (William David) January 1985 (has links)
No description available.
49

Cerium chloride inhibition for high strength low alloy steel exposed to sulphide polluted seawater

Coimbatore Dhandayuth, Venkatesh January 2008 (has links)
[Truncated abstract] Corrosion of steel structures caused by sulphide is a common engineering problem encountered by many industries, such as the petroleum, chemical processing, mining and mineral processing industries. The control of sulphide corrosion is still a controversial topic among corrosion engineers. There is an absence of guideline for a reliable acceptable limit of sulphide level in service and each processing industry has its own empirical values. Selection of inhibitors in the sulphide environment depends on laboratory testing before its actual application in pipelines and reaction vessels. Many investigators have postulated the corrosion mechanisms due to sulphide based on operating envelopes such as pH, chloride, manganese, hydrogen sulphide, sulphate reducing bacteria levels and inhibitor concentration. It is recommended in the literature that the batch dosing of inhibitor and biocide needs to be evaluated in regards to sulphide reducing bacteria (SRB) level, which may produce sulphide concentrations up to 2000 ppm. Although sulphide scale formation may protect the base metal by providing a physical barrier, the detrimental effects of sulphide are often inevitable, such as stress corrosion cracking, hydrogen embrittlement, etc. Currently, there are many chemicals that are used as inhibitors to prevent corrosion by scavenging the sulphide from the environment. Cerium, a rare-earth element, is not used as inhibitor in the sulphide environment. Also, there are no previous research findings on the effects of compounds of rare-earth metals, such as cerium chloride (CeCl3), in sulphide environment. This research examines the corrosion behaviour of 0.4Mo-0.8Cr steel, a High Strength Low Alloy (HSLA) steel, in sulphide-polluted artificial seawater with the addition of CeCl3 and glutaraldehyde. ... It is postulated that the moderate inhibiting effect of CeCl3 is due to the scavenging effect thereby forming Ce2S3 complex. Further reaction of sulphide with steel resulted in ferrous sulphide, leading to an increased corrosion rate. It is also concluded that the CeCl3 interferes with both anodic and cathodic reactions in deaerated conditions. Addition of glutaraldehyde in the sulphide-polluted seawater was found to decrease the corrosion rate. According to the electrochemical measurements conducted, the concurrent addition of glutaraldehyde and CeCl3 appeared to have an added effect on reducing the corrosion of the steel, as evidenced by the increase of the open circuit potential during the short-term testing. From the weight loss measurements after 60 days, sulphide pollution in deaerated seawater was found to increase corrosion rate. This is attributed to the increase of sulphide activity whereby continual dissolution of steel was encountered. From the weight loss tests, it was found that the addition of CeCl3 and glutaraldehyde reduced the corrosion rate of the steel in the solutions containing 0-10 ppm sulphide. There is no noticeable corrosion rate decrease for the solution containing 100 ppm sulphide. The added effect of CeCl3 and glutaraldehyde to the SRB medium has resulted in lower corrosion rates. Further detailed experimentation is required to elucidate the corrosion reduction mechanism in glutaraldehyde-containing environments.
50

Creep, Wear And Corrosion Behaviour Of Novel Magnesium Alloys And Composites

Mondal, Ashok Kumar 03 1900 (has links)
In the present investigation, MMCs have been fabricated using the creep-resistant AE42 magnesium alloy as matrix and reinforcing it with saffil short fibres (essentially δ-Al2O2) and SiC particles in various combinations. These MMCs have been investigated for their creep, wear and corrosion behaviour. The above properties of the matrix AE42 alloy have also been investigated for comparison. Further, laser surface melting has been carried out on a creep-resistant MRI 230D Mg alloy and the corrosion and wear behaviour of this alloy before and after laser surface melting has been investigated. The creep tests on the AE42 alloy were carried out in the temperature range of 1500 to 2400C at the stress levels ranging from 40 to 120 MPa and the composites were tested in the temperature range of 1750C to 3000 at the stress levels ranging from 60 to 140 MPa both in the longitudinal direction (LD) and in the transverse direction (TD). Wear tests were conducted on a pin-on-disc set-up under dry sliding condition at a constant sliding velocity of 0.837 m/s for a constant sliding distance of 2.5 km in the load range of 10 to 40 N for the AE42 alloy and the composites, which were tested both in LD and TD, and for a constant sliding distance of 1km in the load range of 5 to 20 N for the MRI 230D alloy before and after laser melting. All the materials were subjected to electrochemical corrosion tests in a 5 wt.% NaCl solution having ph value 11 for 22 hours. All the composites in both LD and TD exhibit lower creep rate as compared to the AE42 alloy and it is higher in TD than in LD. The creep resistance of the hybrid composites, in which saffil short fibres are partially replaced by SiC particles, is observed to be comparable , i.e., of the same order of magnitude , to that of the composite reinforced with Saffil short fibres alone at all the temperatures and stresses employed in both LD and TD. Wear rate of all the composites in both LD and Td is found to be lower than the alloy at all the loads employed and it is higher in TD than LD, Wear rate progressively decreases with the partial replacement of Saffil short fibres by Sic Particles, and is lowest for the composites reinforced with 10 vol.% Saffil short fibres and 15 vol.% Sic particles in both LD and TD. It is 34% and 35% lower than the 20% Saffil composite at 40 N load in LD and TD, respectively. The Ae42 alloy exhibits the best corrosion resistance and the addition of the Saffil short fibres and/or Sic particles in the AE42 alloy deteriorates its corrosion resitance. The composite reinforced with Saffil short fibres alone exhibits slightly better corrosion resitance than the hybrid composites. However, there is no systematic trend of corrosion resistance with SiC particles content. The laser surface melting is found to improve the corrosion, hardness and wear resistance of the MRI 230D alloy. High temperature climb of dislocation is found to be the dominant creep mechanism in the AE42 alloy in the stress and temperature range employed. Various glide and climb of dislocation are found to be the dominant creep mechanisms for all the composites in both LD and TD in the stress and temperature range employed. The presence of SiC particles in the hybrid composites improves the wear resistance in both LD and TD since these particles remain intact and retain their load bearing capacity even at the highest load employed in the present investigation. They promote the formation of iron-rich transfer layer and they also delay the fracture of Saffil short fibres to higher loads in case of the composites in LD. Under the experimental conditions used in the present investigation, the dominant wear mechanism is found to be abrasion for the AE42 alloy and its composites in both LD and TD. It is accompanied by severe plastic deformation of surface layers in case of the alloy, the fracture of Saffil short fibres as well as the formation of iron-rich transfer layer in case of the composites in Ld, and the fracture and pull-out of the Saffil short fibres in case of the composites in TD. The lower corrosion resistance of all the composites is not caused by the galvanic coupling between reinforcements and matrix, and is related to the microstructural changes, such as, distribution of precipitates and the nature of the film formed at the surface. The improved corrosion resistance following laser surface melting is due to the absence of the Al2Ca phase at the grain boundary, microstructural refinement and increased solid solubility, particularly of Al, owing to rapid solidification; the improved hardness and wear resistance is due to grain refinement and solid solution strengthening. To conclude, the creep resistance of the hybrid composites is comparable, wear resistance is better and corrosion resistance is slightly inferior to the composite reinforced with Saffil short fibres alone. Therefore, from the commercial point of view, the use of the hybrid composites, replacing a part of the expensive Saffil short fibres by cheap SiC particles, is beneficial. The laser surface melting is beneficial for the corrosion and wear resistance of the MRI 230D alloy.

Page generated in 0.0573 seconds