• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] DESENVOLVIMENTO DE UM SISTEMA DE PISO MISTO COM VIGA EM PERFIL ALVEOLAR ASSIMÉTRICO / [en] DEVELOPMENT OF A COMPOSITE FLOOR SYSTEM WITH ASYMMETRIC CASTELLATED STEEL BEAM

CESAR AUGUSTO DE OLIVEIRA FERRANTE 05 May 2020 (has links)
[pt] Sistemas de piso misto, quando comparados a lajes de concreto armado, são uma solução estrutural mais eficiente e econômica. O comportamento geral desses elementos mistos depende da conexão de cisalhamento entre o aço e a laje de concreto. O sistema de piso misto pré-moldado com aberturas de alma apresenta uma solução eficiente e útil que ajuda a reduzir a altura do piso. Este trabalho relata os resultados de ensaios em escala real de vigas mistas e os ensaios de cisalhamento direto da ligação aço-concreto. Além dos ensaios experimentais, uma análise nãolinear em Elementos Finitos foi conduzida com o objetivo de recalcular os resultados dos ensaios com precisão suficiente usando um conjunto de parâmetros consistente. O sistema de piso misto é composto por uma viga de aço assimétrica parcialmente embutida no concreto, e o mecanismo de transferência de cisalhamento foi estabelecido através de uma inovadora conexão de cisalhamento por aderência, atrito e efeito pino (por armaduras transversais passando através de furos na alma). Os resultados dos ensaios indicaram uma ligação rígida produzida pela aderência e atrito da mesa do perfil embutida no concreto, bem como a possibilidade da viga mista de desenvolver sua capacidade resistente ao momento fletor. O modelo analítico proposto fornece uma maneira eficiente de analisar e projetar vigas mistas com mesa de compressão embutida no concreto da laje. / [en] Composite floor systems, when compared to reinforced concrete slabs, are a more cost-effective structural solution. The overall behaviour of these composite members depends on the shear connection between steel and the concrete encasement. The pre-cast composite flooring system with hollowcore section presents an efficient and useful solution that helps to reduc the flooring height. This thesis reports the results of full-scale tests in composite beams and the associated composite connection push-out tests. In addition to the tests, a nonlinear Finite Element analysis was conducted to recalculate the experimental results with sufficient precision using a consistent set of parameters. The system was composed of a partially encased asymmetric steel beam, and the shear transfer mechanism was established through an innovative shear connection by chemical bonding, friction, and dowel action (by transversal reinforcing bars passing through the web s holes). The tests results indicated that a rigid connection was produced by the chemical bonding and friction of the embedded flange profile in the concrete slab, as well as the composite beam s ability to develop its plastic bending moment capacity. The proposed analytical model provides an efficient way for analysing and designing a composite beam with encased compression flanges.
2

T1α/Podoplanin Shows Raft-Associated Distribution in Mouse Lung Alveolar Epithelial E10 Cells

Barth, Kathrin, Bläsche, Robert, Kasper, Michael 20 March 2014 (has links) (PDF)
Aims: T1α/(podoplanin) is abundantly expressed in the alveolar epithelial type I cells (ATI) of rodent and human lungs. Caveolin-1 is a classical primary structural protein of plasmalemal invaginations, so-called caveolae, which represent specialized lipid rafts, and which are particularly abundant in ATI cells. The biological functions of T1α in the alveolar epithelium are unknown. Here we report on the characteristics of raft domains in the microplicae/microvillar protrusions of ATI cells, which contain T1α. Methods: Detergent resistant membranes (DRMs) from cell lysates of the mouse epithelial ATI-like cell line E10 were prepared using different detergents followed by flotation in a sucrose gradient and tested by Western and dot blots with raft markers (caveolin-1, GM1) and nonraft markers (transferrin receptor, PDI and β-Cop). Immunocytochemistry was employed for the localization of T1α in E10 cells and in situ in rat lungs. Results: Our biochemical results showed that the solubility or insolubility of T1α and caveolin-1 differs in Triton X-100 and Lubrol WX, two distinct non-ionic detergents. Caveolin-1 was unsoluble in both detergents, whereas T1α was Triton X-100 soluble but Lubrol WX insoluble. Immunofluorescence double stainings revealed that both proteins were colocalized with GM1, while caveolin-1 and T1α were not colocalized in the plasma membrane. Cholesterol depletion modified the segregation of T1α in Lubrol WX DRMs. Cellular processes in ultrathin sections of cultured mouse E10 cells were immunogold positive. Immunoelectron microscopy (postembedding) of rat lung tissue revealed the preferential localization of T1α on apical microvillar protrusions of ATI cells. Conclusion: We conclude that T1α and caveolin-1 are located in distinct plasma membrane microdomains, which differ in their protein-lipid interactions. The raft-associated distribution of T1α may have an impact on a specific, not yet clarified function of this protein in the alveolar epithelium. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
3

T1α/Podoplanin Shows Raft-Associated Distribution in Mouse Lung Alveolar Epithelial E10 Cells

Barth, Kathrin, Bläsche, Robert, Kasper, Michael January 2010 (has links)
Aims: T1α/(podoplanin) is abundantly expressed in the alveolar epithelial type I cells (ATI) of rodent and human lungs. Caveolin-1 is a classical primary structural protein of plasmalemal invaginations, so-called caveolae, which represent specialized lipid rafts, and which are particularly abundant in ATI cells. The biological functions of T1α in the alveolar epithelium are unknown. Here we report on the characteristics of raft domains in the microplicae/microvillar protrusions of ATI cells, which contain T1α. Methods: Detergent resistant membranes (DRMs) from cell lysates of the mouse epithelial ATI-like cell line E10 were prepared using different detergents followed by flotation in a sucrose gradient and tested by Western and dot blots with raft markers (caveolin-1, GM1) and nonraft markers (transferrin receptor, PDI and β-Cop). Immunocytochemistry was employed for the localization of T1α in E10 cells and in situ in rat lungs. Results: Our biochemical results showed that the solubility or insolubility of T1α and caveolin-1 differs in Triton X-100 and Lubrol WX, two distinct non-ionic detergents. Caveolin-1 was unsoluble in both detergents, whereas T1α was Triton X-100 soluble but Lubrol WX insoluble. Immunofluorescence double stainings revealed that both proteins were colocalized with GM1, while caveolin-1 and T1α were not colocalized in the plasma membrane. Cholesterol depletion modified the segregation of T1α in Lubrol WX DRMs. Cellular processes in ultrathin sections of cultured mouse E10 cells were immunogold positive. Immunoelectron microscopy (postembedding) of rat lung tissue revealed the preferential localization of T1α on apical microvillar protrusions of ATI cells. Conclusion: We conclude that T1α and caveolin-1 are located in distinct plasma membrane microdomains, which differ in their protein-lipid interactions. The raft-associated distribution of T1α may have an impact on a specific, not yet clarified function of this protein in the alveolar epithelium. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
4

Toward a comprehensive interpretation of intravital microscopy images in studies of lung tissue dynamics

Gaertner, Maria, Schirrmann, Kerstin, Schnabel, Christian, Meissner, Sven, Kertzscher, Ulrich, Kirsten, Lars, Koch, Edmund 09 September 2019 (has links)
Intravital microscopy (IVM) is a well-established imaging technique for real-time monitoring of microscale lung tissue dynamics. Although accepted as a gold standard in respiratory research, its characteristic image features are scarcely understood, especially when trying to determine the actual position of alveolar walls. To allow correct interpretation of these images with respect to the true geometry of the lung parenchyma, we analyzed IVM data of alveoli in a mouse model in comparison with simultaneously acquired optical coherence tomography images. Several IVM characteristics, such as double ring structures or disappearing alveoli in regions of liquid filling, could be identified and related to the position of alveoli relative to each other. Utilizing a ray tracing approach based on an idealized geometry of the mouse lung parenchyma, two major reflection processes could be attributed to the IVM image formation: partial reflection and total internal reflection between adjacent alveoli. Considering the origin of the reflexes, a model was developed to determine the true position of alveolar walls within IVM images. These results allow thorough understanding of IVM data and may serve as a basis for the correction of alveolar sizes for more accurate quantitative analysis within future studies of lung tissue dynamics.

Page generated in 0.0377 seconds