Spelling suggestions: "subject:"alzheimer's's disease research""
11 |
Novel regulation of neuronal genes implicated in Alzheimer disease by microRNALong, Justin M. 11 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer disease (AD) results, in part, from the excess accumulation of the amyloid-β peptide (Aβ) as neuritic plaques in the brain. The short Aβ peptide is derived from a large transmembrane precursor protein, APP. Two different proteolytic enzymes, BACE1 and the gamma-secretase complex, are responsible for cleaving Aβ peptide from APP through an intricate processing pathway. Dysregulation of APP and BACE1 levels leading to excess Aβ deposition has been implicated in various forms of AD. Thus, a major goal in this dissertation was to discover novel regulatory pathways that control APP and BACE1 expression as a means to identify novel drug targets central to the Aβ-generating process. MicroRNAs (miRNA) are short, non-coding RNAs that act as post-transcriptional regulators of gene expression through specific interactions with target mRNAs. Global analyses predict that over sixty percent of human transcripts contain evolutionarily conserved miRNA target sites. Therefore, the specific hypothesis tested was that miRNA are relevant regulators of APP and BACE1 expression.
In this work, several specific miRNA were identified that regulate APP protein expression (miR-101, miR-153 and miR-346) or BACE1 expression (miR-339-5p). These miRNAs mediated their post-transcriptional effects via interactions with specific target sites in the APP and BACE1 transcripts. Importantly, these miRNA also altered secretion of Aβ peptides in primary human fetal brain cultures. Surprisingly, miR-346 stimulated APP expression via target sites in the APP 5’-UTR. The mechanism of this effect appears to involve other RNA-binding proteins that bind to the APP 5’-UTR.
Expression analyses demonstrated that these miRNAs are expressed to varying degrees in the human brain. Notably, miR-101, miR-153 and miR-339-5p are dysregulated in the AD brain at various stages of the disease. The work in this dissertation supports the hypothesis that miRNAs are important regulators of APP and BACE1 expression and are capable of altering Aβ homeostasis. Therefore, these miRNA may possibly serve as novel therapeutic targets for AD.
|
12 |
ROLE OF GENOMIC COPY NUMBER VARIATION IN ALZHEIMER'S DISEASE AND MILD COGNITIVE IMPAIRMENTSwaminathan, Shanker 14 February 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer's disease (AD) is the most common form of dementia defined by loss in memory and cognitive abilities severe enough to interfere significantly with daily life activities. Amnestic mild cognitive impairment (MCI) is a clinical condition in which an individual has memory deficits not normal for the individual's age, but not severe enough to interfere significantly with daily functioning. Every year, approximately 10-15% of individuals with MCI will progress to dementia. Currently, there is no treatment to slow or halt AD progression, but research studies are being conducted to identify causes that can lead to its earlier diagnosis and treatment.
Genetic variation plays a key role in the development of AD, but not all genetic factors associated with the disease have been identified. Copy number variants (CNVs), a form of genetic variation, are DNA regions that have added genetic material (duplications) or loss of genetic material (deletions). The regions may overlap one or more genes possibly affecting their function. CNVs have been shown to play a role in certain diseases.
At the start of this work, only one published study had examined CNVs in late-onset AD and none had examined MCI. In order to determine the possible involvement of CNVs in AD and MCI susceptibility, genome-wide CNV analyses were performed in participants from three cohorts: the ADNI cohort, the NIA-LOAD/NCRAD Family Study cohort, and a unique cohort of clinically characterized and neuropathologically verified individuals. Only participants with DNA samples extracted from blood/brain tissue were included in the analyses. CNV calls were generated using genome-wide array data available on these samples. After detailed quality review, case (AD and/or MCI)/control association analyses including candidate gene and genome-wide approaches were performed.
Although no excess CNV burden was observed in cases compared to controls in the three cohorts, gene-based association analyses identified a number of genes including the AD candidate genes CHRFAM7A, RELN and DOPEY2. Thus, the present work highlights the possible role of CNVs in AD and MCI susceptibility warranting further investigation. Future work will include replication of the findings in independent samples and confirmation by molecular validation experiments.
|
Page generated in 0.067 seconds