Spelling suggestions: "subject:"ambas suppression"" "subject:"ambit suppression""
1 |
Two Dimensional Genetic Approach to the Development of a Controllable Lytic Phage Display SystemSheldon, Katlyn 20 February 2013 (has links)
Bacteriophage Lambda (λ) has played a historical role as an essential model contributing to our current understanding of molecular genetics. Lambda’s major capsid protein “gpD” occurs on each capsid at 405 to 420 copies per phage in homotrimeric form and functions to stabilize the head and likely to compact the genomic DNA. The interesting conformation of this protein allows for its exploitation through the genetic fusion of peptides or proteins to either the amino or carboxy terminal end of gpD, while retaining phage assembly functionality and viability. The lytic nature of λ and the conformation of gpD in capsid assembly makes this display system superior to other display options.
Despite previous reports of λ as a phage display candidate, decorative control of the phage remains an elusive concept. The primary goal of this study was to design and construct a highly controllable head decoration system governed by two genetic conditional regulation systems; plasmid-mediated temperature sensitive repressor expression and bacterial conditional amber mutation suppression.
The historical λ Dam15 conditional allele results in a truncated gpD fragment when translated in nonsuppressor, wild-type E. coli cells, resulting in unassembled, nonviable progeny. I sequenced the Dam15 allele, identifying an amber (UAG) translational stop at the 68th codon. Employing this mutant in combination with a newly created isogenic cellular background utilizing the amber suppressors SupD (Serine), SupE (Glutamine), SupF (Tyrosine) and Sup— (wild type), we sought to control the level of incorporation of undecorated gpD products. As a second dimension, I constructed two separate temperature-inducile plasmids whereby expression of either D or D::eGFP was governed by the λ strong λ CI[Ts]857 temperature-sensitive repressor and expressed from the λ PL strong promoter.
Our aim was to measure the decoration of the λ capsid by a D::gfp fusion under varying conditions regulated by both temperature and presence of suppression. This was achieved utilizing this controllable system, enabling the measurement of a variable number of fusions per phage based on diverse genetic and physical environments without significantly compromising phage viability. Surprisingly, both SupE and SupF showed similar levels of Dam15 suppression, even though sequencing data indicated that only SupE could restore the native gpD sequence at amino acid 68 (Q). In contrast, SupD (S), conferred very weak levels of suppression, but imparted an environment for very high decoration of gpD::eGFP per capsid, even at lower (repressed) temperatures. The presence of albeit few wild-type gpD molecules allowed for an even greater display than that of the perceived “100%” decoration scenario provided by the nonsuppressor strain. It appears that the lack of wild-type gpD does not allow for the space required to display the maximum number of fusions and in turn creates an environment that affects both phage assembly and therefore phage viability. Finally, the use of Western blotting, confirmed the presence of gpD::eGFP fusion decoration by employing a polyclonal anti-eGFP antibody.
The significance of this work relates to the unique structure of λ’s capsid and its ability to exploit gpD in the design of controlled expression, which is guiding future research examining the fusion of different therapeutic peptides and proteins. Furthermore this approach has important implications specifically for the design of novel vaccines and delivery vehicles for targeted gene therapy in which steric hindrance and avidity are important concerns.
The execution of this project employed basic bacterial genetics, phage biology and molecular biology techniques in the construction of bacterial strains and plasmids and the characterization of the phage display system.
|
2 |
Two Dimensional Genetic Approach to the Development of a Controllable Lytic Phage Display SystemSheldon, Katlyn 20 February 2013 (has links)
Bacteriophage Lambda (λ) has played a historical role as an essential model contributing to our current understanding of molecular genetics. Lambda’s major capsid protein “gpD” occurs on each capsid at 405 to 420 copies per phage in homotrimeric form and functions to stabilize the head and likely to compact the genomic DNA. The interesting conformation of this protein allows for its exploitation through the genetic fusion of peptides or proteins to either the amino or carboxy terminal end of gpD, while retaining phage assembly functionality and viability. The lytic nature of λ and the conformation of gpD in capsid assembly makes this display system superior to other display options.
Despite previous reports of λ as a phage display candidate, decorative control of the phage remains an elusive concept. The primary goal of this study was to design and construct a highly controllable head decoration system governed by two genetic conditional regulation systems; plasmid-mediated temperature sensitive repressor expression and bacterial conditional amber mutation suppression.
The historical λ Dam15 conditional allele results in a truncated gpD fragment when translated in nonsuppressor, wild-type E. coli cells, resulting in unassembled, nonviable progeny. I sequenced the Dam15 allele, identifying an amber (UAG) translational stop at the 68th codon. Employing this mutant in combination with a newly created isogenic cellular background utilizing the amber suppressors SupD (Serine), SupE (Glutamine), SupF (Tyrosine) and Sup— (wild type), we sought to control the level of incorporation of undecorated gpD products. As a second dimension, I constructed two separate temperature-inducile plasmids whereby expression of either D or D::eGFP was governed by the λ strong λ CI[Ts]857 temperature-sensitive repressor and expressed from the λ PL strong promoter.
Our aim was to measure the decoration of the λ capsid by a D::gfp fusion under varying conditions regulated by both temperature and presence of suppression. This was achieved utilizing this controllable system, enabling the measurement of a variable number of fusions per phage based on diverse genetic and physical environments without significantly compromising phage viability. Surprisingly, both SupE and SupF showed similar levels of Dam15 suppression, even though sequencing data indicated that only SupE could restore the native gpD sequence at amino acid 68 (Q). In contrast, SupD (S), conferred very weak levels of suppression, but imparted an environment for very high decoration of gpD::eGFP per capsid, even at lower (repressed) temperatures. The presence of albeit few wild-type gpD molecules allowed for an even greater display than that of the perceived “100%” decoration scenario provided by the nonsuppressor strain. It appears that the lack of wild-type gpD does not allow for the space required to display the maximum number of fusions and in turn creates an environment that affects both phage assembly and therefore phage viability. Finally, the use of Western blotting, confirmed the presence of gpD::eGFP fusion decoration by employing a polyclonal anti-eGFP antibody.
The significance of this work relates to the unique structure of λ’s capsid and its ability to exploit gpD in the design of controlled expression, which is guiding future research examining the fusion of different therapeutic peptides and proteins. Furthermore this approach has important implications specifically for the design of novel vaccines and delivery vehicles for targeted gene therapy in which steric hindrance and avidity are important concerns.
The execution of this project employed basic bacterial genetics, phage biology and molecular biology techniques in the construction of bacterial strains and plasmids and the characterization of the phage display system.
|
3 |
Structural studies of cpTat component Tha4 in both native and synthetic membrane systemsStorm, Amanda R. 05 December 2013 (has links)
No description available.
|
4 |
Non-canonical amino acid incorporation as a strategy for labeling membrane bound Na+/K+-ATPase for fluorescence microscopy imagingJohansson Holopainen, Adam January 2023 (has links)
Natrium-kaliumpumpen spelar en väsentlig roll i en rad fysiologiska funktioner då den upprätthåller den elektrokemiska gradienten över cellmembranet. Ytterligare så är störningar i dess funktion associerade med flera neurologiska sjukdomar. Proteinet är en heterodimer av α– och β–subenheter, ibland även associerat med en tredje γ (FXYD) subenhet, vilket gör det problematiskt att studera dess högre ordningens organisation i cellmembranet med hjälp av konventionella, relativt storskaliga inmärkiningsprober såsom antikroppar. Inkorporering av icke-kanoniska aminosyror är ett nyutvecklat och växande område som erbjuder en lösning. Genom CuAAC– och SPIEDAC–klickkonjugationsreaktioner kan organiska färgämnen (fluoroforer) snabbt och specifikt fästas i sidokedjor med motsvarande reaktiva grupper på jonpumpen, vilket skapar en liten och icke-invasiv inmärkningsprob för fluorescensmikroskopi. För att specifikt studera alla tre subenheter samtidigt krävs inmärkning med tre olika fluoroforer). Syftet med detta projekt var att lyckas med trefärgsinmärkning genom inkorporering av icke-kanoniska aminosyror, och därigenom underlätta studerandet av hur natrium-kaliumpumpens subenheter ordnar sig i cellmembranet. Transient transfekterade HEK293T-celler med membraninmärkta jonpumpar studerades med hjälp av fluorescensmikroskopi, vilket kompletterades med gelfluorescensavbildning och immunoblotting. Samtidigt gjordes proteinuttryck och tvåfärgsinmärkning av alla nonsenskodonmuterade subenheter i kombination med varandra och var synlig i proteingel, där endast α och β tidigare hade samuttryckts. α/γ parinmärkning visade sig framgångsrik när de samtransfekterades med β av vildtyp. En autofluorescenseffekt i en av färgkanalerna påverkade resultaten för mikroskopin. Trefärgsinmärkning observerades inte i gelen, och uttrycket av subenheterna (varav α var ersatt för detta experiment) var i stort sett obefintligt. Otydlighet består därmed huruvida trefärgsinmärkning eller trippelsamuttryck är möjligt med de bioortogonala translationssystemen som användes i detta projekt på jonpumpen. / Na+/K+-ATPase is an essential ion pump protein in a host of physiological functions as it maintains the electrochemical gradient across cell membranes. Additionally, its dysfunction is implicated in several neurological diseases. The protein is a heterodimer of α and β subunits, occasionally associated with a third γ (FXYD) subunit, which makes studying its higher order organization in the cell membrane difficult using conventional, relatively large scale labeling probes such as antibodies. Non-canonical amino acid incorporation is an emerging field which offers a solution. Via CuAAC and SPIEDAC click conjugation reactions, organic fluorophores can be specifically attached to the side chains of residues of the ion pump with corresponding reactive moieties, creating a small and noninvasive probe for fluorescence microscopy imaging. In order to specifically image all three subunits concurrently, three color labeling is required. The objective of this project was to achieve three color labeling via non-canonical amino acid incorporation to aid in the study of the cell membrane localization of the subunits of Na+/K+-ATPase. Fluorescence microscopy of transiently transfected and live cell labeled HEK293T cells was complemented by in gel fluorescence imaging and immunoblotting. Coexpression and two color labeling of all nonsense codon subunit mutants in combination was shown in gel, of which only α and β had previously been coexpressed. α/γ dual labeling proved successful when cotransfected with wild type β. An autofluorescent effect in one of the color channels compromised the microscopy results. Three color labeling was not observed in gel, and expression of the subunits (including a substitute for α) was middling to absent. It remains unclear whether three color labeling or triple coexpression is a possibility with the bioorthogonal translation systems used in this project.
|
Page generated in 0.0991 seconds