• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental Studies and Applications of Ambient Plasma Ionization Sources for Mass Spectrometry

Ellis, Wade C. 01 July 2017 (has links)
The field of ambient desorption/ionization mass spectrometry (ADI-MS) has existed for over a decade. ADI-MS is a technique that offers benefits including fast analysis time, simple ionization sources that are easily constructed, and little to no required sample preparation. The research presented here describes efforts to better understand plasma-based ADI-MS sources and to explore the use of hydrogen-doped plasma gases with these sources. The use of hydrogen-doped argon (H2/Ar) and hydrogen-doped helium (H2/He) as plasma gases for a dielectric barrier discharge (DBD) and an AC glow discharge is presented first. When using the DBD, the intensity of the signal obtained when analyzing organic molecules in positive ion mode was increased by factors up to 37 times. In negative ion mode, only H2/Ar was shown to enhance the signal of an organic analyte. The limits of detection for caffeine when using hydrogen-doped plasma gases were found to decrease by factors of 78 and 1.9 for H2/Ar and H2/He respectively. The same phenomenon was observed when using H2/Ar with the AC discharge, but no signal enhancement was observed when using hydrogen-doped helium with the AC discharge. Similarly, if the DBD was allowed to ground through a wire rather than through the air, no signal enhancement was observed for H2/He. Using H2/Ar with metal samples is presented second. By using the metal sample as the grounded electrode for the AC glow discharge, many different metals could be detected directly with a time-of-flight mass spectrometer (TOF-MS) in the form of atomic ions both on their own and in combination with water and ammonia from the discharge. Any refractory metals tested did not yield signal. In addition to direct analysis with a TOF-MS, the AC discharge was used as a sampling method for an inductively coupled plasma mass spectrometer (ICP-MS). When coupled with an ICP-MS, the AC glow discharge was found capable of sampling even refractory elements, though the power of the ICP was required for ionization and detection. Scanning electron microscope (SEM) images of a copper surface exposed to the plasma discharge showed signs of melting when using the H2/Ar. Finally, a computer simulation of the chemistry and flow dynamics of a DC glow discharge generated in helium is presented. The simulation explores many of the fundamental processes at work and how they depend on the composition of the plasma gas. The generation of important species in the plasma was found to depend more on the amount of N2 and H2O impurities in the plasma gas rather than on the humidity or air pressure.
2

Optical and Mass Spectrometric Studies of a Helium Dielectric-Barrier Atmospheric-Pressure Plasma Jet Used as an Ambient Desorption Ionization Source

Heywood, Matthew Spencer 06 March 2012 (has links) (PDF)
Recently there has been a surge in the field of mass spectrometry centered around the concept of rapid analysis of target analytes with minimal or no sample preparation. The target analyte undergoes desorption from its surface of origin and is subsequently ionized under ambient conditions. The technique is termed ambient desorption/ionization mass spectrometry (ADI-MS). Since the introduction of ADI-MS in 2004, there has been an explosion of research based around the development of novel ambient desorption/ionization (ADI) sources with the capability of desorbing and ionizing a variety of target analytes from various sampling surfaces. One type of ADI source uses the properties of an electrical discharge, typically a helium gas plasma, for desorption and ionization. For electrical-discharge-based sources, ionization is the result of an atmospheric pressure chemical ionization (APCI) process. The initiation of the APCI process it generally attributed to the Penning ionization of atmospheric nitrogen (N2) by highly energetic helium metastable species (Hem). In this work, I describe the direct imaging of the densities of helium metastable atoms in atmospheric pressure plasma jet (APPJ) of a helium-based dielectric-barrier discharge (DBD) using collisionally-assisted laser-induced fluorescence. Axial Hem distributions are compared to the emission of excited helium (He*) and nitrogen ion (N2+*) species in the plasma. A correlation is found between Hem densities and the performance of the ionization source in ADI-MS. Fluorescence images also show that Hem densities increase substantially when a glass slide is placed 10 mm from the discharge capillary in a geometry typical for desorption/ionization experiments. Advantage is taken of the time-varying nature of the plasma to produce axial profiles of temporally and spectrally resolved fluorescence images of Hem atoms and ground state nitrogen ions in the plasma jet. The axial distribution and similarities in the temporal behavior of the helium metastable and ground state nitrogen ion species give strong evidence that nitrogen ion species are created via Penning ionization by helium metastable atoms. Although axial distributions of He*,N2+*, and N2* emission support the fluorescence data, temporally-resolved emission measurements show that emission from key plasma species is almost entirely the result of excitation by a temporal energy wave. The effect that hydrogen (H2) has on the helium metastable atom densities is also presented. The addition of hydrogen to the discharge gas severely quenches the metastable state, leaving it virtually undetectable. The addition of 0.9% H2 to the helium in the source provides an order of magnitude increase in ADI-MS signal for target analytes despite the quenching of the Hem population.

Page generated in 0.1886 seconds