1 |
Exploration into novel properties of ultra-high concentration hydrogen doped rutile-TiO₂ / 超高濃度水素ドーピングによるrutile-TiO2の新規物性の探究LIM, GYEONG CHEOL 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23457号 / 理博第4751号 / 新制||理||1681(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)准教授 前里 光彦, 教授 北川 宏, 教授 竹腰 清乃理 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
2 |
Fundamental Studies and Applications of Ambient Plasma Ionization Sources for Mass SpectrometryEllis, Wade C. 01 July 2017 (has links)
The field of ambient desorption/ionization mass spectrometry (ADI-MS) has existed for over a decade. ADI-MS is a technique that offers benefits including fast analysis time, simple ionization sources that are easily constructed, and little to no required sample preparation. The research presented here describes efforts to better understand plasma-based ADI-MS sources and to explore the use of hydrogen-doped plasma gases with these sources. The use of hydrogen-doped argon (H2/Ar) and hydrogen-doped helium (H2/He) as plasma gases for a dielectric barrier discharge (DBD) and an AC glow discharge is presented first. When using the DBD, the intensity of the signal obtained when analyzing organic molecules in positive ion mode was increased by factors up to 37 times. In negative ion mode, only H2/Ar was shown to enhance the signal of an organic analyte. The limits of detection for caffeine when using hydrogen-doped plasma gases were found to decrease by factors of 78 and 1.9 for H2/Ar and H2/He respectively. The same phenomenon was observed when using H2/Ar with the AC discharge, but no signal enhancement was observed when using hydrogen-doped helium with the AC discharge. Similarly, if the DBD was allowed to ground through a wire rather than through the air, no signal enhancement was observed for H2/He. Using H2/Ar with metal samples is presented second. By using the metal sample as the grounded electrode for the AC glow discharge, many different metals could be detected directly with a time-of-flight mass spectrometer (TOF-MS) in the form of atomic ions both on their own and in combination with water and ammonia from the discharge. Any refractory metals tested did not yield signal. In addition to direct analysis with a TOF-MS, the AC discharge was used as a sampling method for an inductively coupled plasma mass spectrometer (ICP-MS). When coupled with an ICP-MS, the AC glow discharge was found capable of sampling even refractory elements, though the power of the ICP was required for ionization and detection. Scanning electron microscope (SEM) images of a copper surface exposed to the plasma discharge showed signs of melting when using the H2/Ar. Finally, a computer simulation of the chemistry and flow dynamics of a DC glow discharge generated in helium is presented. The simulation explores many of the fundamental processes at work and how they depend on the composition of the plasma gas. The generation of important species in the plasma was found to depend more on the amount of N2 and H2O impurities in the plasma gas rather than on the humidity or air pressure.
|
Page generated in 0.0465 seconds