• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The ABC's of Cell Division: Regulation of Peptidoglycan Amidase Activity during Cytokinesis in Escherichia coli

Yang, Desiree Choy 21 June 2013 (has links)
The bacterial cell wall, composed of peptidoglycan (PG), is an essential component of the cell envelope. This macromolecular structure fortifies the cell membrane, determines cell shape, and helps prevent osmotic lysis. The synthesis and remodeling/recycling of this polymer is mediated by PG synthases and hydrolases, respectively. Proper control of the PG hydrolases is particularly important since misregulation of these enzymes can lead to lethal breaches in the cell wall. Surprisingly, however, the precise molecular mechanisms governing the activities of these enzymes remain poorly understood. To help understand how PG hydrolases are regulated, I examined how their activity is controlled during cytokinesis in Escherichia coli. One important class of PG hydrolases necessary for cell division is the LytC-type amidases (AmiA, AmiB and AmiC). These enzymes require activation by the LytM factors EnvC and NlpD. My work focused on elucidating the mechanism by which the LytM factors activate the amidases. Using a genetic enrichment strategy, I isolated amiB misregulation mutants. Interestingly, the mutations mapped to a region of AmiB found only in cell separation amidases. Structural analysis of an AmiB ortholog indicates that this region corresponds to an alpha-helical domain that appears to occlude the active site. Thus, activation of the amidases by the LytM factors likely occurs via a conformational change that displaces the regulatory helix from the active site. In addition to amidase regulation, I also investigated how the LytM activators are recruited to, and regulated at the site of division. Using genetic and biochemical approaches, I showed that EnvC is directly recruited to the division site by FtsEX, an ATP-binding transporter- like complex. Interestingly, ATPase-defective FtsEX derivatives can still recruit EnvC to the divisome, but fail to promote cytokinesis. These results support a model where conformational changes induced by the ATPase activity of FtsE are directly and specifically transmitted to the amidases via FtsX and EnvC. This model is attractive because it provides a mechanism for converting the potentially dangerous activity of septal PG splitting into a discrete process which can be cycled on and off in coordination with the division process.
12

Étude de gènes suicides et de promédicaments pour la thérapie génique du cancer

Trudeau, Caroline January 2002 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
13

Identification of novel cold-adapted nitrilase superfamily enzymes

Nel, Andrew James Mascré January 2009 (has links)
Philosophiae Doctor - PhD / In bacteria, nitrile hydratases and enzymes of nitrilase and signature amidase superfamilies hydrolyse nitriles and amides to their corresponding carboxylic acids releasing ammonia. Bacteria expressing these enzymes are typically isolated where a sole nitrogen and/or carbon source is used to support their growth. The majority of characterised enzymes of industrial potential have been identified for their stabilities at elevated temperatures. To date, no reports of such enzymes have been isolated from cold adapted bacteria.In this study, an extensive screening program of cold-active microbial isolates for enzymes of this group led to the selection and detailed characterisation of an aliphatic amidase from Nesterenkonia.Nesterenkonia AN1, a new psychrotrophic isolate of the genus, was isolated from soil samples collected from the Miers Valley, Antarctica. AN1 showed significant 16S rRNA sequence identity to known members of the genera, but this is the only strain that had optimal growth at approximately 21oC. AN1, similar to known members, is an obligately alkaliphilic (pH 9-10) and halotolerant (Na+ 0- 15% (w/v)) strain.The genome of Nesterenkonia AN1, sequenced in-house, revealed two ORFs encoding putative nitrilases, referred to as Nit1 and Nit2. Based on analysis of their deduced protein sequences, both belonged to the nitrilase superfamily. Both sequences showed conserved catalytic residues (EKEC), glycine residues and contained the characteristic áââá monomer fold. Homology modelling using known structures suggested that both genes could encode N-carbamoyl D-amino acid amidohydrolases, although neither showed conserved residues implicated in the hydrolysis of carbamoyls.Nit1 and Nit2 were expressed in Escherichia coli BL21 (DE3) pLysS as Cterminal and N-terminal hexahistidine tagged fusion proteins, and purified using Ni-chelation chromatography. Nit1 showed no activity towards nitrile, amide and carbamoyl substrates. This protein, unlike members of the multimeric enzymes of the nitrilase superfamily, was a monomer ~30 kDa protein. It is possible that the C-terminal hexahistidine tag might have prevented Nit1 from forming multimeric proteins.Nit2 showed substrate specificity similar to known aliphatic amidases with a preference for small amides. Nit2 had maximal activity at 30oC and between pH 6.5 and 7.5, properties compatible with its cold-adapted alkaliphilic origins. In addition, the enzyme was irreversibly inactivated at temperatures above 30oC and had a half-life of approximately 7 mins at 60oC. The crystal structure of Nit2 was solved to 1.66 Å. It revealed a ~45.5 kDa dimer, composed of two tightly bound ~30 kDa monomers. These monomers associated along the A surface forming a áââá-áââá sandwich architecture that is conserved in known structures of the nitrilase superfamily.Nit2 is distinct from known aliphatic amidases in both its structure and enzymic activity: the enzyme did not possess an extended C-terminal region; is active in dimeric form; has high affinity for 3C amides rather than 2C amides; and has a low overall catalytic rate. The short C-terminal region of Nit2 may have contributed to the low stability of the enzyme at elevated temperatures. A dendrogram composed of protein sequences of members of the nitrilase superfamily and Nit2 further supported evidence that this aliphatic amidase falls within a distinct group of enzymes.This is the first report of the enzymic characterisation and structural analysis of an aliphatic amidase from a psychrotolerant, alkaliphilic and halotolerant extremophile.
14

Exprese genů pro konverzi nitrilů a amidů v Rhodococcus erythropolis / Expression of genes for the conversion of nitriles and amides in Rhodococcus erythropolis

Kracík, Martin January 2011 (has links)
The strain Rhodococcus erythropolis A4 is a source of enzymes nitrilhydratase and amidase, that catalyse conversion of nitriles and amides. These enzymes are used in industrial biotransformation and bioremediation. Since it was difficult to carry out genetic manipulations aimed at increasing the production of these enzymes in the strain A4, the corresponding genes (ami and nha1 + nha2) of a related strain R. erythropolis CCM2595, in which both plasmid and chromosome manipulations can be routinely performed, were identified and analyzed in this diploma theses. The ami and nha1 + nha2 genes from the strain R. erythropolis CCM2595 were isolated and sequenced together with the flanking regions (5.5 kb in total). The organization of these genes and the expected regulatory genes was described in the strain CCM2595 and mechanisms of regulation of expression of these genes were studied. For the analysis of transcription of amidase and nitrilhydratase genes from both strains of R. erythropolis, the promoter-probe vector pEPR1 replicating in Escherichia coli and R. erythropolis was used. Transcriptional fusion of Pami promoters of the strains A4 and CCM2595 and the reporter gfp gene were constructed. The activity of the Pami promoter was measured by means of fluorescence of gfp gene product (green fluorescent...

Page generated in 0.0451 seconds