• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amine Transaminases in Multi-Step One-Pot Reactions

Anderson, Mattias January 2017 (has links)
Amine transaminases are enzymes that catalyze the mild and selective formation of primary amines, which are useful building blocks for biologically active compounds and natural products. In order to make the production of these kinds of compounds more efficient from both a practical and an environmental point of view, amine transaminases were incorporated into multi-step one-pot reactions. With this kind of methodology there is no need for isolation of intermediates, and thus unnecessary work-up steps can be omitted and formation of waste is prevented. Amine transaminases were successfully combined with other enzymes for multi-step synthesis of valuable products: With ketoreductases all four diastereomers of a 1,3-amino alcohol could be obtained, and the use of a lipase allowed for the synthesis of natural products in the form of capsaicinoids. Amine transaminases were also successfully combined with metal catalysts based on palladium or copper. This methodology allowed for the amination of alcohols and the synthesis of chiral amines such as the pharmaceutical compound Rivastigmine. These examples show that the use of amine transaminases in multi-step one-pot reactions is possible, and hopefully this concept can be further developed and applied to make industrial processes more sustainable and efficient in the future. / <p>QC 20170113</p>
2

Amine Transaminases in Biocatalytic Amine Synthesis

Land, Henrik January 2016 (has links)
The use of enzymes, nature´s own catalysts, both isolated or as whole cells to perform chemical transformations is called biocatalysis. As a complement to classical chemical catalysis, biocatalysis can be an environmentally friendly and more economical option in the production and synthesis of chemicals. Research on the application of amine transaminases in synthesis of chiral amines have exploded over the last two decades and interest from the industry is increasing. Amine transaminases are promising catalysts due to their ability to perform reductive amination of ketones with excellent enantioselectivity. For a process to be efficient, high substrate specificity of the applied enzyme is an important factor. A variant of Chromobacterium violaceum amine transaminase that was obtained through rational design has an increased specific activity toward (S)-1-phenylethylamine and a set of 4´-substituted acetophenones. This result makes this variant a promising catalyst for the asymmetric synthesis of similar amines. Amine transaminase catalyzed asymmetric synthesis of amines generally suffers from unfavorable equilibrium. Two methods that include spontaneous tautomerization and biocatalytic amidation for equilibrium displacement have therefore been developed. Efficient assays and screening methods are demanded for the discovery and development of novel amine transaminases. For this purpose, a sensitive fluorescence-based assay that holds promise as a high-throughput screening method was developed. One of the major obstacles for application of enzymes in industrial processes is the instability of the enzyme toward harsh conditions. The stability of Chromobacterium violaceum amine transaminase was investigated and improved using co-solvents and other additives. Co-lyophilization with surfactants was also applied to improve the performance of the same enzyme in organic solvents. / <p>QC 20161017</p>
3

Chiral amines by transaminase biocatalysis in organic media

Rincon Fontan, Myriam January 2014 (has links)
No description available.

Page generated in 0.0977 seconds