• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 9
  • 5
  • 3
  • 1
  • Tagged with
  • 120
  • 120
  • 120
  • 34
  • 32
  • 22
  • 18
  • 16
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

PSSMs : not just roadkill on the information superhighway /

Ng, Pauline Crystal. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 93-101).
62

Design of synthetic peptides that display cell binding and signaling sequences on calcium phosphate surfaces /

Gilbert, Michele. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 180-209).
63

On multiple sequence alignment

Wang, Shu, 1973- 29 August 2008 (has links)
The tremendous increase in biological sequence data presents us with an opportunity to understand the molecular and cellular basis for cellular life. Comparative studies of these sequences have the potential, when applied with sufficient rigor, to decipher the structure, function, and evolution of cellular components. The accuracy and detail of these studies are directly proportional to the quality of these sequences alignments. Given the large number of sequences per family of interest, and the increasing number of families to study, improving the speed, accuracy and scalability of MSA is becoming an increasingly important task. In the past, much of interest has been on Global MSA. In recent years, the focus for MSA has shifted from global MSA to local MSA. Local MSA is being needed to align variable sequences from different families/species. In this dissertation, we developed two new algorithms for fast and scalable local MSA, a three-way-consistency-based MSA and a biclustering -based MSA. The first MSA algorithm is a three-way-Consistency-Based MSA (CBMSA). CBMSA applies alignment consistency heuristics in the form of a new three-way alignment to MSA. While three-way consistency approach is able to maintain the same time complexity as the traditional pairwise consistency approach, it provides more reliable consistency information and better alignment quality. We quantify the benefit of using three-way consistency as compared to pairwise consistency. We have also compared CBMSA to a suite of leading MSA programs and CBMSA consistently performs favorably. We also developed another new MSA algorithm, a biclustering-based MSA. Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in MSA is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering algorithms are intended to address. We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was compared with a suite of leading MSA programs. With respect to quantitative measures of MSA, BlockMSA scores comparable to or better than the other leading MSA programs. With respect to biological validation of MSA, the other leading MSA programs lag BlockMSA in their ability to identify the most highly conserved regions.
64

Molecular biology of Bunyavirus-host interactions.

Baldridge, Gerald Don. January 1989 (has links)
Ribonuclease T1 oligonucleotide fingerprint (ONF) analysis was used to study genomic stability of La Crosse virus (Bunyaviridae) during vertical and horizontal transmission in the laboratory. No RNA genomic changes were detected in vertebrate cell culture-propagated virus isolated (following oral ingestion and replication) from the natural mosquito host, Aedes triseriatus. Genomic changes were not detected during transovarial passage of virus through two generations of mosquitoes or in virus isolated from suckling mice infected by transovarially infected mosquitoes. These results demonstrate that the La Crosse virus genome can remain relatively stable during transovarial transmission (TOT) in the insect host and during transfer between insect and vertebrate hosts. ONF analysis was used to demonstrate TOT of reassortant California serogroup bunyaviruses in Aedes treiseriatus. Mosquitoes were simultaneously inoculated with temperature sensitive mutants of La Crosse and Snowshoe hare viruses able to replicate at 33°C but not at 40°C. Putative reassortants, selected by replication at 40°C, were isolated from progeny mosquitoes and mice infected by these mosquitoes. ONF analysis confirmed that they were reassortants. Approximately 75% of the M segment and 25% of the L segment nucleotide sequences of Inkoo virus (Bunyaviridae) were determined by Sanger dideoxynucleotide sequencing of cDNA clones. Comparison of the M segment nucleotide and deduced amino acid sequences with those of four other bunyaviruses, representing two serogroups, revealed greater conservation of nucleotide than of amino acid sequence between serogroups. Areas of the sequences representing nonstructural protein(s) were less conserved than glycoprotein regions. The L segment nucleotide sequence begins with the known 3' end of the viral L segment and contains an open reading frame encoding the amino terminal 505 amino acids of the viral L protein. The amino acid sequence contains the glycine-aspartate-aspartate motif which is conserved in many RNA-dependent RNA polymerases. Comparison of the L segment sequences with those in the GEN Bank Data Base revealed no significant similarities with any other sequence.
65

Protein folding

Cohen, Fred E. January 1980 (has links)
Recent studies of the relationship between protein sequence and protein structure are reviewed. A detailed discussion of past attempts to predict the structure of a protein from its amino acid sequence, the protein folding problem, is presented and the strengths and weaknesses of these methods are examined. The root-mean-square deviation is studied and a benchmark for structural comparisons is established. A combinatorial approach to the protein folding problem is outlined and its advantages over existing methods is discussed. Specific algorithms based on the combinatorial approach are developed and applied to a variety of proteins. The success of this approach in terms of the root-mean-square deviation benchmark as well as the drawbacks of this method are presented.
66

Origin and evolution of eukaryotic gene sequences derived from transposable elements

Piriyapongsa, Jittima 09 June 2008 (has links)
My dissertation encompasses five different studies that are linked by a common theme the investigation of transposable element (TE) contributions to eukaryotic gene sequences. A detailed analysis of exonization events of LTR elements in the human genome shows the preference towards the fixation of LTR elements in gene untranslated regions, which supports the existing concept of a major role of LTR elements as a natural source of regulatory sequences. The ability of different classes of sequence similarity search methods to detect TE-derived sequences was evaluated. In general, the different search methods are found to be complementary, and combined search approaches are needed to systematically check any data set for all potential TE-associated coding sequences. On average, TE-derived exon sequences have low protein coding potential. In particular, non-coding TEs, are frequently exonized but unlikely to encode protein sequences. Many of these non-coding exonized TEs may be actually involved in gene regulation via the formation of double stranded RNA complexes with complementary TE-derived exons. The investigation of the relationship between human miRNAs and TEs shows that 55 experimentally verified human miRNA genes (~12%) originated from TEs. Overall, TE-derived miRNA genes are less conserved than non TE-derived miRNAs. The potential regulatory and functional significance of TE-derived miRNAs was explored. An ab initio prediction algorithm I developed was used to discover putative cases of novel TE-derived miRNA genes. A miRNA gene family, hsa-mir-548, was found to be derived from Made1 family of MITEs. The palindromic structure of the Made1 elements, and MITEs in general, points to a specific mechanism by which these sequences can be recognized and processed by the miRNA biogenesis pathway. MITEs may also represent an evolutionary link between siRNAs and miRNAs. An original model for a siRNA-to-miRNA evolutionary transition mediated by DNA-type TEs is proposed. This model is supported by the presence of evolutionary intermediate TE sequences that encode both siRNAs and miRNAs in the Arabidopsis and rice genomes. The siRNA-to-miRNA evolutionary transition is representative of a number of other regulatory mechanisms that evolved to silence TEs and were later co-opted to serve as regulators of host gene expression.
67

Molecular cloning and characterization of nucleoside diphosphate kinase in cultured sugarcane cells

Dharmasiri, Sunethra January 1995 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 104-124). / Microfiche. / xii, 124 leaves, bound photos. 29 cm
68

Expression and purification of the novel protein domain DWNN.

Lutya, Portia Thandokazi January 2002 (has links)
Proteins play an important role in cells, as the morphology, function and activities of the cell depend on the proteins they express. The key to understanding how different proteins function lies in an understanding of the molecular structure. The overall aim of this thesis was the determination of the structure of DWNN domains. This thesis described the preparation of samples of human DWNN suitable for structural analysis by nuclear magnetic resonance spectroscopy (NMR), as well as NMR analysis.
69

Oxygen-dependent regulation of transcription by the hypoxia-inducible factor-1 /

Ruas, Jorge, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
70

Regulation of protein degradation by virus derived repeated amino acid sequences /

Leonchiks, Ainars, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 6 uppsatser.

Page generated in 0.0718 seconds