• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amplified fragment length polymorphism (AFLP) analysis of genetic variability in Phalaenopsis

Chang, Yeun-Kyung 28 August 2008 (has links)
Amplified fragment length polymorphism (AFLP) markers allow a rapid assessment of the level of genetic variation that would be difficult to evaluate using a limited number of morphological markers. AFLP was used to assess the level of genetic variation among 16 different Phalaenopsis species and hybrids. Ten AFLP primer combinations were used for genetic analysis of these Phalaenopsis and 95% of polymorphism in 16 Phalaenopsis species and hybrids was detected. The genetic similarity among Phalaenopsis species and hybrids ranged from 0.298 to 0.774 based on Dice coefficient. The dendrogram derived by UPGMA analysis clustered into two main groups. A significant linear relationship (r² = 0.524, P < 0.0001) was observed between known pedigrees and AFLP-derived genetic similarity for 136 pairwise comparisons of Phalaenopsis species and hybrids. The results indicate that there is an abundance of genetic diversity among within Phalaenopsis and that AFLP can be used to distinguish morphologically similar genotypes. In a second study, the effect of gametophytic selection on genetic diversity in Phalaenopsis was examined by AFLP analysis. Sixteen F1 seedlings resulting from cross-pollination that occurred within high (30 ºC) and low (14 ºC) temperature incubators between two hybrid Phalaenopsis [P. (Taisoco Windian à Sogo Yukidian) by P. hybrid unknown], were subjected to genetic analysis by AFLP. A total of 651 fragments ranging in size from 100 to 350 bp were detected using six primer combinations, of which 387 (59.4%) were polymorphic. Seedlings derived from different temperature treatments exhibited 25.5% to 35.9% polymorphism. The genetic similarity among 16 F1 seedlings ranged from 0.825 to 0.946 based on the Dice coefficient. A dendrogram based on 387 polymorphic markers was derived by UPGMA analysis resulting in three major groups and one subgroup. The dendrogram analysis showed clear clustering in Phalaenopsis hybrids pollinated under different temperature treatments, suggesting that several loci may have been selected during the divergent temperature stress treatments during pollination and early pollen tube growth. / Master of Science
2

Mycorrhizal specificity in endemic Western Australian terrestrial orchids (tribe Diurideae): Implications for conservation

Hollick@central.murdoch.edu.au, Penelope Sarah Hollick January 2004 (has links)
The specificity of fungal isolates from endemic Western Australian orchid species and hybrids in the tribe Diurideae was investigated using symbiotic seed germination and analysis of the fungal DNA by amplified fragment length polymorphism (AFLP). The distribution of the fungal isolates in the field was also assessed using two different seed baiting techniques. The information from these investigations is essential for developing protocols for reintroduction and translocation of orchid species. Two groups of orchids in the tribe Diurideae were studied. Firstly, a number of Caladenia species, their natural hybrids and close relatives from the southwest of Western Australia were selected because orchid species from the genus Caladenia are considered to have among the most specific mycorrhizal relationships known in the orchid family – an ideal situation for the investigation of mycorrhizal specificity. Secondly, species of Drakaea and close relatives, from the southwest of Western Australia and elsewhere in Australia, which are never common in nature and occur in highly specialised habitats, were selected to investigate the influence of habitat on specificity. Seed from the common species Caladenia arenicola germinated on fungal isolates from adult plants of both C. arenicola and its rare and endangered relative C. huegelii, while seed from C. huegelii only germinated on its own fungal isolates. The AFLP analysis grouped the fungal isolates into three categories: nonefficaceous fungi, C. huegelii type fungi, and C. arenicola type fungi. The group of C. huegelii type fungi included some fungal isolates from C. arenicola. An analysis of the AFLP fingerprints of C. arenicola fungal isolates from different collection locations showed that some, but not all, populations were genetically distinct, and that one population in particular was very variable. Despite being thought to have very specific mycorrhizal relationships, Caladenia species hybridise frequently and prolifically in nature, often forming self-perpetuating hybrid lineages. Five natural hybrids within Caladenia and its closest relatives were investigated. Symbiotic cross-germination studies of parental and hybrid seed on fungi from the species and the naturally occurring hybrids were compared with AFLP analyses of the fungal isolates to answer the question of which fungi the hybrids use. The germination study found that, while hybrid seeds can utilise the fungi from either parental species under laboratory conditions, it is likely that the natural hybrids in situ utilise the fungus of only one parental species. Supporting these observations, the AFLP analyses indicated that while the parental species always possessed genetically distinct fungal strains, the hybrids may share the mycorrhizal fungus of one parental species or possess a genetically distinct fungal strain which is more closely related to the fungus of one parental species than the other. The work on Caladenia hybrids revealed that C. falcata has a broadly compatible fungus that germinated seeds of C. falcata, the hybrid C. falcata x longicauda, and species with different degrees of taxonomic affinity to C. falcata. In general, germination was greater from species that were more closely related to C. falcata: seeds from Caladenia species generally germinated well on most C. falcata isolates; species from same subtribe (Caladeniinae) germinated well to the stage of trichome development on only some of the fungal isolates and rarely developed further; and seeds from species from different subtribes (Diuridinae, Prasophyllinae, Thelymitrinae) or tribes (Orchideae, Cranichideae) either germinated well to the stage of trichome development but did not develop further, or did not germinate at all. The AFLP analysis of the fungal isolates revealed that the fungi from each location were genetically distinct. In situ seed baiting was used to study the introduction, growth and persistence of orchid mycorrhizal fungi. A mycorrhizal fungus from Caladenia arenicola was introduced to sites within an area from which the orchid and fungus were absent, adjacent to a natural population of C. arenicola. In the first growing season, the fungus grew up to 50 cm from its introduction point, usually persisted over the summer drought into the second season and even into the third season, stimulating germination and growth to tuber formation of the seeds in the baits. Watering the inoculated areas significantly increased seed germination. Mycorrhizal relationships in Drakaeinae were less specific than in Caladeniinae. A study of the species Spiculaea ciliata revealed that this species, when germinated symbiotically, develops very rapidly and has photosynthetic protocorms, unlike all other members of the Drakaeinae. An AFLP analysis of the fungal isolates of this species grouped the isolates according to whether they had been isolated from adult plants or reisolated from protocorms produced in vitro. Isolates were genetically distinct when compared before germination and after reisolation. A cross-species symbiotic germination study of seeds of three Drakaea species and one Paracaleana species against fungal isolates from the same species and several other Drakaeinae species revealed lower specificity in this group than previously thought. A number of fungal isolates from Drakaea and Paracaleana species germinated two or more seed types, while all seed types germinated on fungal isolates from other species and the seed of Drakaea thynniphila germinated to some extent on every fungal isolate tested. An AFLP analysis of the Drakaeinae fungal isolates supported this information, revealing little genetic differentiation between the fungi of different orchid species. An ex situ seed baiting technique was used to examine the role of mycorrhizal fungi in microniche specialisation in the narrow endemic Drakaea. Soil samples from within and outside two Drakaea populations were tested for germination of the relevant seed types. In both cases, germination was significantly higher on soil samples from within than outside the populations, suggesting that the relevant mycorrhizal fungi may be restricted to the same microniches as the Drakaea species. The presence of similar fungi at distant, disjunct locations may be related to the extreme age and geological stabilityof the Western Australian landscape. The information from these investigations is essential for developing protocols for reintroduction and translocation of orchid species. It appears that the mycorrhizal relationships in these groups of orchids are not as specific as was previously thought. For reintroduction work, a broad sampling strategy is necessary, as it cannot be assumed that the same orchid species has the same fungus at different locations. A broadly compatible fungus may be of considerable utility in conservation work, such as in situations where a specific fungus appears to have poor saprophytic competence or where soil conditions have been altered. Seed baiting studies provide additional data on fungal distribution in situ. In general, molecular data do not provide information about efficacy or fungal distribution, so research programs that combine symbiotic germination studies with seed baiting investigations and genetic analyses of the fungi will provide the maximum benefit for designing more effective conservation programs.
3

The Contribution of Within-Field Inoculum Sources of Gibberella zeae to Fusarium Head Blight in Winter Wheat and Barley

Keller, Melissa Dawn 12 May 2011 (has links)
Fusarium head blight (FHB) is one of the most economically important diseases of small grains and continues to impact crops when environmental conditions are favorable to Gibberella zeae (Fusarium graminearum), the causal agent of the disease. Corn residues are considered to be primary sources of inoculum for epidemics of FHB. Therefore, knowledge of the movement of Gibberella zeae from a local source of infested corn residue is critical to the management of FHB in wheat and barley. Previous research made significant progress in defining the spatial dissemination of inoculum sources of G. zeae within agricultural fields, but was unable to clearly distinguish between within-field and background sources. Using amplified fragment length polymorphism, released clones of G. zeae were tracked within wheat and barley fields. This strategy allowed the distinction between the contributions of released clones to FHB, compared to that of background inocula. Corn residue infested with clones of G. zeae was placed into small replicated plots in winter wheat fields in New York and Virginia in 2007 and 2008 and wheat spikes were collected at 0, 3, 6, and ≥24 m from the inoculum sources. Recovery of released clones decreased an average of 90% between 3 and 6 m from inoculum sources. Various amounts of corn residue infested with a single clone of G. zeae were placed into small replicated plots in winter wheat and barley fields in Virginia from 2008 to 2010. The use of minimal or conventional tillage and a moderately resistant cultivar of wheat or barley may reduce the contribution of within-field inocula to FHB; however, environmental conditions play an important role in the effectiveness of these management strategies. With the increase of corn production due to incentives for ethanol-based fuel, overwintering sites for G. zeae on corn residue are likely to increase. Our work contributes to an increased understanding of the influence of overwintered corn residue to FHB which will also direct future research on how to reduce the inoculum potential from within-field sources. / Ph. D.
4

Genomic differentiation of big bluestem (Andropogon gerardii) along the Great Plains’ environmental gradient

Gray, Miranda M. January 1900 (has links)
Master of Science / Department of Plant Pathology / Eduard D. Akhunov / Loretta C. Johnson / Big bluestem (Andropogon gerardii Vitman) is an ecologically dominant grass of the North American grasslands with precipitation-dependent productivity. However, climatic predictions for big bluestem’s dominant range in the Great Plains include increased periods of drought. The main objectives of this research were to determine the extent of neutral and non-neutral genetic differentiation and diversity among putative big bluestem ecotypes using amplified fragment length polymorphism (AFLP) markers. This is the first study of both neutral and non-neutral genetic diversity of big bluestem which also includes source populations of well-described ecotypes studied in reciprocal common gardens. A total of 378 plants were genotyped from 11 source prairies, originating from one of three ecoregions (Central Kansas, Eastern Kansas, and Illinois). Using two AFLP primer sets, 387 polymorphic markers (error rate 9.18%) were found. Un-rooted neighbor joining tree and principle-component analyses showed continuous genetic differentiation between Kansas and Illinois putative ecotypes, with genetic overlap occurring between Kansas ecotypes. Analysis of molecular variance showed high diversity within-prairie sites (80%) relative to across-prairies (11%), and across- ecoregions (9%) (p<0.001). Within-prairie genetic diversity levels were similar among ecoregions (84-92%), with the highest genetic variation maintained in Illinois prairies (92%). Population structure analyses supported K=6 genetic clusters across the environmental gradient, with Kansas prairies belonging to three main genetic groups, and Illinois prairies having largely divergent allele frequencies from Kansas prairies. Interestingly, BAYESCAN analysis of the three putative ecotypes identified eight F[subscript]ST-outlier AFLP loci under potential diversifying selection. Frequency patterns of loci under diversifying selection were further linked to geo-environmental descriptors including precipitation, temperature severity, diurnal temperature variation, prairie location, and elevation. The observed allele frequency divergence between Kansas and Illinois ecotypes suggests tallgrass restorations should consider possible maladaptation of non-local ecotypes and genetic swamping. However, high within-prairie genetic variation may help individual big bluestem populations withstand climatic variability.
5

Padrões de distribuição e estrutura genética de schinus molle l. na região do pampa brasileiro

Lemos, Rafael Plá Matielo 08 August 2014 (has links)
Submitted by Ana Damasceno (ana.damasceno@unipampa.edu.br) on 2016-10-10T19:11:40Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Padrões de distribuição e estrutura genética de schinus molle l. na região do pampa brasileiro.pdf: 1391928 bytes, checksum: 2218d5b0fe88623d4d79a44918949a55 (MD5) / Made available in DSpace on 2016-10-10T19:11:41Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Padrões de distribuição e estrutura genética de schinus molle l. na região do pampa brasileiro.pdf: 1391928 bytes, checksum: 2218d5b0fe88623d4d79a44918949a55 (MD5) Previous issue date: 2014-08-08 / Um dos principais aspectos para a ecologia de populações e evolução é o entendimento da conectividade entre os indivíduos e seus grupos. O bioma Pampa apresenta diversos componentes florísticos de grande importância ecológica, e sua estrutura de campo, estépico-savana, vem sendo fragmentada e impactada pelo sistema de produção e pela falta de manejo desse bioma naturalmente frágil. A partir da informação da diversidade genética de populações nativas é possível entender o atual estado de fragmentação ambiental, esclarecer se há fluxo-gênico entre populações, e sugerir formas de manejo que possam garantir a sobrevivência da biodiversidade local. Nesse estudo, Schinus molle L. (Anacardiaceae) foi empregada para avaliar a dinâmica ecológica, a diversidade e a estrutura genética em espécies arbóreas no bioma Pampa. A dinâmica de expansão prevista para a espécie foi determinada através de modelagem de nichos ecológicos e estrutura e diversidade genética foram avaliadas em nove populações amostradas dentro do bioma Pampa stricto sensu, utilizando marcadores microssatélite e AFLP. O mapa da modelagem de nichos ecológicos de S. molle sugere a expansão da espécie sobre o campo, como um fenômeno natural da dinâmica ecológica do bioma. A estrutura genética intra- e inter-populacional sugere limitações ao fluxo gênico e, a diversidade genética intra-populacional é baixa se comparada a espécies com as mesmas características biológicas. O isolamento entre populações e o pequeno tamanho destas parece ser o principal fator interferindo negativamente no ambiente. A manutenção de conexões entre as populações é a ação imediata sugerida para preservar a espécie e o bioma. / One of the main aspects for the population ecology and evolution is the understanding of the connectivity among individuals and their groups. The Pampa biome presents several floristic elements of high ecological importance and its grassy structure, steppic-savanna, has been fragmented and impacted by the production system and by the absence of management of this naturally fragile biome. From the information about genetic diversity of native populations, it is possible to understand the current status of the environment degradation, highlighting the presence of gene flow among populations and to suggest management strategies that could guarantee the survival of the local biodiversity. In this study, Schinus molle L. (Anacardiaceae) was employed to evaluate the ecological dynamic, the genetic diversity and structure in tree species of the Pampa biome. The expected expansion dynamic for this species was determined through ecological niche modeling and the genetic diversity and structure were evaluated in nine populations sampled within the Pampa stricto sensu, using microsatellite and AFLP markers. The ecological niche modeling map of S. molle suggests the species expansion over the grassland as a natural phenomenon of the biomes ecological dynamic. The intra- and inter-population genetic structure suggests limitations to the gene flow and the intra-population genetic structure is low in comparison to species with the same biological traits. The isolation among populations and their small size seems to be the main factor negatively interfering in the environment. The maintenance of connections among the populations is the immediate action suggested to safeguard the species and the biome.
6

Molecular Characterization Of Blumeria Graminis F. Sp. Hordei Using Aflp Markers

Callak Kirisozu, Asude 01 September 2009 (has links) (PDF)
Blumeria graiminis f. sp. hordei (powdery mildew) is an obligate biotroph infecting hordeum vulgare (barley). It is one of the most devastating pathogens of barley, decreasing barley yield in great extent. In order to decrease barley loss, numerous studies are being conducted for overcoming the disease from the sides of both pathogen and host. However the pathogen is evolving very rapidly preventing the effective use of pesticides such as fungisides or development of resistant barley varieties by crossing race-specific resistance varieties, varieties having R genes, with susceptible but high yield producing varieties. In order to understand the mechanism of pathogen-host interactions, and producing enduring solutions for the problem of yield loss in barley molecular tools need to be used. In this thesis study, Amplified Fragment Length Polymorphism (AFLP) molecular marker method is used in order to reveal the molecular characterization of Turkish Blumeria graminis f. sp. hordei varieties collected from &Ccedil / ukurova region in Turkey. Thirty-nine samples were analyzed with eigth universal races, of which virulence genes are studied. AFLP studies were conducted on LI-COR 4300 DNA Analyzer system. Bioinformatics analysis was performed with NTSYS program. By the help of this Numerical Taxonomic System, similarity, dissimilarity, clustering, dendograms, two-dimensional scatter plots, and three-dimensional perspective plots were obtained. By the light of these analyses Turkish Blumeria graminis f. sp. hordei varieties together with universal races are grouped into three clusteres. In conclusion, studying Turkish Blumeria graminis f. sp. hordei isolates and comparing them with universal races is a unique study in terms of characterizing the Turkish Bgh isolates for the first time, and can be used as a frontier study for studying Resistance genes, by reverse genetic tools.
7

Diversity of a disease resistance gene homolog in Andropogon gerardii (poaceae) is correlated with precipitation

Rouse, Matthew January 1900 (has links)
Master of Science / Department of Plant Pathology / Karen A. Garrett / Ecological clines often result in gradients of disease pressure in natural plant communities, imposing a gradient of selection on disease resistance genes. We describe the diversity of a resistance gene homolog in natural populations of the dominant tallgrass prairie grass, Andropogon gerardii, across a precipitation gradient ranging from 47.63 cm/year in western Kansas to 104.7 cm/year in central Missouri. Since moisture facilitates infection by foliar bacterial pathogens, plants along this precipitation gradient will tend to experience heavier bacterial disease pressure to the east. In maize, the gene Rxo1 confers resistance to the pathogenic bacterium Burkholderia andropogonis. Rxo1 homologs have been identified in A. gerardii and B. andropogonis is known to infect natural populations of A. gerardii. The spatial genetic structure of A. gerardii was assessed from central Missouri to western Kansas by genotyping with AFLP markers. Samples were also genotyped for Rxo1 homologs by amplifying an 810 base pair region of the leucine-rich repeat and digesting with restriction enzymes. We compared Rxo1 homolog diversity to AFLP diversity across different spatial scales. Genetic dissimilarity based on AFLP markers was lower than would have occurred by chance at distances up to 30 m, and different prairies were more dissimilar than would have occurred by chance, but there was not a longitudinal trend in within-prairie dissimilarity as measured by AFLP markers. Dissimilarity of the Rxo1 homologs was higher in the east suggesting the presence of diversifying selection in the more disease-conducive eastern environments.
8

Protoplast fusion of Lolium perenne and Lotus corniculatus for gene introgression

Raikar, Sanjeev Vencu January 2007 (has links)
Protoplast fusion of Lolium perenne and Lotus corniculatus for gene introgression by Sanjeev V. Raikar Lolium perenne is one of the most important forage crops globally and in New Zealand. Lotus corniculatus is a dicotyledonous forage that contains valuable traits such as high levels of condensed tannins, increased digestibility, and high nitrogen fixing abilities. However, conventional breeding between these two forage crops is impossible due to their markedly different taxonomic origin. Protoplast fusion (somatic hybridisation) provides an opportunity for gene introgression between these two species. This thesis describes the somatic hybridisation, the regeneration and the molecular analysis of the putative somatic hybrid plants obtained between L. perenne and L. corniculatus. Callus and cell suspensions of different cultivars of L. perenne were established from immature embryos and plants were regenerated from the callus. Of the 10 cultivars screened, cultivars Bronsyn and Canon had the highest percentage of callus induction at 36% each on 5 mg/L 2,4-D. Removal of the palea and lemma which form the seed coat was found to increase callus induction ability of the embryos. Plant regeneration from the callus was achieved when the callus was plated on LS medium supplemented with plant growth regulators at different concentrations. Variable responses to shoot regeneration was observed between the different cultivars with the cv Kingston having the lowest frequency of shoot formation (12%). Different factors affecting the protoplast isolation of L. perenne were investigated. The highest protoplast yield of 10×106 g-1FW was obtained when cell suspensions were used as the tissue source, with enzyme combination ‘A’ (Cellulase Onozuka RS 2%, Macerozyme R-10 1%, Driselase 0.5%, Pectolyase 0.2%), for 6 h incubation period in 0.6 M mannitol. Development of microcolonies was only achieved when protoplasts were plated on nitrocellulose membrane with a L. perenne feeder layer on PEL medium. All the shoots regenerated from the protoplast-derived calli were albino shoots. The highest protoplast yield (7×106 g-1FW) of L. corniculatus was achieved from cotyledons also with enzyme combination ‘A’ (Cellulase Onozuka RS 2%, Macerozyme R-10 1%, Driselase 0.5%, Pectolyase 0.2%), for 6 h incubation period in 0.6 M mannitol. The highest plating efficiency for L. corniculatus of 1.57 % was achieved when protoplasts were plated on nitrocellulose membrane with a L. perenne feeder layer on PEL medium. The highest frequency of shoot regeneration (46%) was achieved when calli were plated on LS medium with NAA (0.1 mg/L) and BA (0.1 mg/L). Protoplast fusion between L. perenne and L. corniculatus was performed using the asymmetric somatic hybridisation technique using PEG as the fusogen. L. perenne protoplasts were treated with 0.1 mM IOA for 15 min and L. corniculatus protoplasts were treated with UV at 0.15 J/cm2 for 10 min. Various parameters affecting the fusion percentage were investigated. Successful fusions were obtained when the fusions were conducted on a plastic surface with 35% PEG (3350 MW) for 25 min duration, followed by 100 mM calcium chloride treatment for 25 min. A total of 14 putative fusion colonies were recovered. Shoots were regenerated from 8 fusion colonies. Unexpectedly, the regenerated putative hybrid plants resembled L. corniculatus plants. The flow cytometric profile of the putative somatic hybrids resembled that of L. corniculatus. Molecular analysis using SD-AFLP, SCARs and Lolium specific chloroplast microsatellite markers suggest that the putative somatic hybrids could be L. corniculatus escapes from the asymmetric protoplast fusion process. This thesis details a novel Whole Genome Amplification technique for plants using Strand Displacement Amplification technique.
9

Protoplast fusion of Lolium perenne and Lotus corniculatus for gene introgression

Raikar, S. V. January 2007 (has links)
Lolium perenne is one of the most important forage crops globally and in New Zealand. Lotus corniculatus is a dicotyledonous forage that contains valuable traits such as high levels of condensed tannins, increased digestibility, and high nitrogen fixing abilities. However, conventional breeding between these two forage crops is impossible due to their markedly different taxonomic origin. Protoplast fusion (somatic hybridisation) provides an opportunity for gene introgression between these two species. This thesis describes the somatic hybridisation, the regeneration and the molecular analysis of the putative somatic hybrid plants obtained between L. perenne and L. corniculatus. Callus and cell suspensions of different cultivars of L. perenne were established from immature embryos and plants were regenerated from the callus. Of the 10 cultivars screened, cultivars Bronsyn and Canon had the highest percentage of callus induction at 36% each on 5 mg/L 2,4-D. Removal of the palea and lemma which form the seed coat was found to increase callus induction ability of the embryos. Plant regeneration from the callus was achieved when the callus was plated on LS medium supplemented with plant growth regulators at different concentrations. Variable responses to shoot regeneration was observed between the different cultivars with the cv Kingston having the lowest frequency of shoot formation (12%). Different factors affecting the protoplast isolation of L. perenne were investigated. The highest protoplast yield of 10×10⁶ g⁻¹FW was obtained when cell suspensions were used as the tissue source, with enzyme combination 'A' (Cellulase Onozuka RS 2%, Macerozyme R-10 1%, Driselase 0.5%, Pectolyase 0.2%), for 6 h incubation period in 0.6 M mannitol. Development of microcolonies was only achieved when protoplasts were plated on nitrocellulose membrane with a L. perenne feeder layer on PEL medium. All the shoots regenerated from the protoplast-derived calli were albino shoots. The highest protoplast yield (7×10⁶ g⁻¹FW) of L. corniculatus was achieved from cotyledons also with enzyme combination 'A' (Cellulase Onozuka RS 2%, Macerozyme R-10 1%, Driselase 0.5%, Pectolyase 0.2%), for 6 h incubation period in 0.6 M mannitol. The highest plating efficiency for L. corniculatus of 1.57 % was achieved when protoplasts were plated on nitrocellulose membrane with a L. perenne feeder layer on PEL medium. The highest frequency of shoot regeneration (46%) was achieved when calli were plated on LS medium with NAA (0.1 mg/L) and BA (0.1 mg/L). Protoplast fusion between L. perenne and L. corniculatus was performed using the asymmetric somatic hybridisation technique using PEG as the fusogen. L. perenne protoplasts were treated with 0.1 mM IOA for 15 min and L. corniculatus protoplasts were treated with UV at 0.15 J/cm² for 10 min. Various parameters affecting the fusion percentage were investigated. Successful fusions were obtained when the fusions were conducted on a plastic surface with 35% PEG (3350 MW) for 25 min duration, followed by 100 mM calcium chloride treatment for 25 min. A total of 14 putative fusion colonies were recovered. Shoots were regenerated from 8 fusion colonies. Unexpectedly, the regenerated putative hybrid plants resembled L. corniculatus plants. The flow cytometric profile of the putative somatic hybrids resembled that of L. corniculatus. Molecular analysis using SD-AFLP, SCARs and Lolium specific chloroplast microsatellite markers suggest that the putative somatic hybrids could be L. corniculatus escapes from the asymmetric protoplast fusion process. This thesis details a novel Whole Genome Amplification technique for plants using Strand Displacement Amplification technique.

Page generated in 0.1025 seconds