• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 12
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 74
  • 70
  • 33
  • 27
  • 23
  • 20
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Cooperative Communication Protocols : Diversity-Multiplexing Gain Tradeoff And Code Constructions

Vinodh, K 07 1900 (has links)
Cooperative relay communication is a promising means of wireless communication in which cooperation is used to create a virtual transmit array between the source and the destination, thereby providing spatial diversity for combating the fading channel. In this thesis we develop cooperative communication protocols namely the orthogonal amplify-and-forward (OAF), non-orthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time code constructions are provided. The code construction is based on Cyclic Division Algebras. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the OAF and NAF protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. In the two-relay case, the variable-NSDF protocol is shown to improve on the DMT of the best previously-known static protocol for higher values of multiplexing gain. Our results also establish that the fixed-NSDF protocol has a better DMT than the NAF protocol for any number of relays.
62

Définition et analyse des performances de nouveaux protocoles coopératifs

Hucher, Charlotte 10 July 2009 (has links) (PDF)
Dans un réseau coopératif, différents noeuds coopèrent afin de créer un réseau d'antennes virtuel et exploiter la diversité spatio-temporelle. On s'intéresse d'abord au canal à relai. Afin d'améliorer les performances à bas SNR, on propose une stratégie adaptative pour les protocoles "amplify-and-forward" (AF) et "decode-and-forward" (DF) qui détermine la meilleure technique de transmission en fonction du canal. Afin de définir un protocole DF à la fois performant et facile à implémenter, on propose ensuite d'utiliser un décodage incomplet aux relais. Cette technique permet d'atteindre les gains de multiplexage et de diversité maximaux, son DMT est le même que celui du protocol AF non-orthogonal (NAF). Pour réduire la complexité aux relais, deux nouvelles méthodes de décodage sont proposées, basées pour l'une sur la structure des codes TAST, et pour l'autre sur une approximation diophantienne. Dans le cas où plusieurs sources transmettent simultanément, on parle de canal coopératif à accès multiple (CMA). Une implémentation pratique et deux améliorations du protocole CMA-NAF sont proposées, ainsi qu'une variante utilisant une stratégie DF. Ces protocoles permettent d'atteindre de meilleures performances asymptotiques et leur DMT est plus proche de la borne MISO. Enfin, si le lien direct entre source et destination est inutilisable, on utilise une stratégie multi-saut. Dans cette thèse, on propose un protocole pour le canal "K-parallel-path" (KPP), basé sur la sélection de chemin combinée avec un code spatio-temporel de faible dimension. Ce protocole permet d'atteindre les limites théoriques du canal tout en ayant une complexité limitée.
63

Analysis and Optimization of Cooperative Amplify-and-Forward Relaying with Imperfect Channel Estimates

Bharadwaj, Sachin January 2013 (has links) (PDF)
Relay-based cooperation promises significant gains in a wireless network as it provides an inde-pendent path between a source and a destination. Using simple single antenna nodes, it exploits the spatial diversity provided by the geographically separated nodes in a network to improve the robustness of the communication system against fading. Among the cooperative commu¬nication schemes, the amplify-and-forward (AF) relaying scheme is considered to be easy to implement since the relay does not need to decode its received signal. Instead, it just forwards to the destination the signal it receives from the source. We analyze the performance of fixed-gain AF relaying with imperfect channel knowledge that is acquired through an AF relay-specific training protocol. The analysis is challenging because the received signal at the destination contains the product (or cascade) of source-relay (SR) and relay-destination (RD) complex baseband channel gains, and additional products terms that arise due to imperfect estimation related errors. We focus on the time-efficient cascaded channel estimation (CCE) protocol to acquire the channel estimates at the destination. Using it, the destination can only estimate the product of SR and RD complex baseband channel gains, but not the two separately. Our analysis encompasses a single AF relay system and an opportunistic system with mul¬tiple AF relays, among which one is selected to forward its received signal to the destination, based on its SR and RD complex baseband channel gains. For a single relay system, we first de¬velop a novel SEP expression and a tight SEP upper bound. We then analyze the opportunistic multi-relay system, in which both selection and coherent demodulation use imperfect channel estimates. A distinctive aspect of our approach is the use of as few simplifying approximations as possible. It results in a new analysis that is accurate at signal-to-noise-ratios as low as 1 dB for single and multi-relay systems. Further, the training protocol is an integral part of the model and analysis. Using an insightful asymptotic analysis, we then present a simple, closed-form, nearly-optimal solution for allocation of energy between pilot and data symbols at the source and relay(s). Further, the optimal energy allocation between a source and a relay is characterized when both together operate under a sum energy constraint, as has often been assumed in the literature. In summary, the sum total of the results in this work provides a rigorous and accurate performance characterization and optimization of cascaded channel estimation for AF relaying.
64

Optimal Amplify-And-Forward Relaying For Cooperative Communications And Underlay Cognitive Radio

Sainath, B 04 1900 (has links) (PDF)
Relay-assisted cooperative communication exploits spatial diversity to combat wireless fading, and is an appealing technology for next generation wireless systems. Several relay cooperation protocols have been proposed in the literature. In amplify-and-forward (AF)relaying, which is the focus of this thesis, the relay amplifies the signal it receives from the source and forwards it to the destination. AF has been extensively studied in the literature on account of its simplicity since the relay does not need to decode the received signal. We propose a novel optimal relaying policy for two-hop AF cooperative relay systems. In this, an average power-constrained relay adapts its gain and transmit power to minimize the fading-averaged symbol error probability (SEP) at the destination. Next, we consider a generalization of the above policy in which the relay operates as an underlay cognitive radio (CR). This mode of communication is relevant because it promises to address the spectrum shortage constraint. Here, the relay adapts its gain as a function of its local channel gain to the source and destination and also the primary such that the average interference it causes to the primary receiver is also constrained. For both the above policies, we also present near-optimal, simpler relay gain adaptation policies that are easy to implement and that provide insights about the optimal policies. The SEPs and diversity order of the policies are analyzed to quantify their performance. These policies generalize the conventional fixed-power and fixed-gain AF relaying policies considered in cooperative and CR literature, and outperform them by 2.0-7.7 dB. This translates into significant energy savings at the source and relay, and motivates their use in next generation wireless systems.
65

Cognitive Communications for Emerging Wireless Systems

Alizadeh, Ardalan January 2016 (has links)
No description available.
66

Estimation de canal à évanouissements plats dans les transmissions sans fils à relais multibonds / Flat fading channel estimation for multihop relay wireless transmissions

Ghandour-Haidar, Soukayna 12 December 2014 (has links)
Cette thèse traite de l'estimation d'un canal de communication radio-mobile multi-bond. La communication entre l'émetteur et le récepteur est ainsi faite par l'intermédiaire de relais (de type « Amplify and-Forward ») en série. Les différents éléments (émetteurs, relais, récepteurs) peuvent être fixes ou mobiles. Chaque lien de communication (chaque bond) est modélisé par un canal de Rayleigh à évanouissements plats, avec un spectre Doppler issu de deux environnements possibles de diffusion : en deux dimensions (2D, amenant le spectre en U de Jakes), ou en trois dimensions (3D, amenant un spectre Doppler plat). L'objectif majeur de la thèse est l'estimation dynamique du canal global issue de la cascade des différents liens. A cette fin, la cascade de canaux est approchée par une modèle auto-régressif du premier ordre (AR (1)), et l'estimation est réalisée à l'aide d'un algorithme standard, le filtre de Kalman. La méthode couramment utilisée dans la littérature pour fixer le paramètre du modèle AR(1) est basée sur un critère de « corrélation matching » (CM). Cependant, nous montrons que pour des canaux à variations lentes, un autre critère basé sur la minimisation de la variance asymptotique (MAV) de la sortie du filtre de Kalman est plus approprié. Pour les deux critères, CM et MAV, cette thèse donne une justification analytique en fournissant des formules approchées de la variance d'estimation par le filtre de Kalman, ainsi que du réglage optimal du paramètre du modèle AR(1). Ces formules analytiques sont données en fonctions des fréquences Doppler et du rapport signal sur bruit, pour les environnements de diffusion 2D et 3D, quel que soit le nombre et le type de bonds (fixe-mobile ou mobile-mobile). Les résultats de simulations montrent un gain considérable en termes de l'erreur quadratique moyenne (MSE) de l'estimateur de canal bien réglé, en particulier pour le scénario le plus courant de canal à évanouissements lents. / This thesis deals with the estimation of the multihop Amplify-and-Forward relay communications. The various objects (transmitter, relays, receivers) can be fixed or mobile. Each link is modeled by a flat fading Rayleigh channel, with a Doppler spectrum resulting from two-dimensional (2D, leading to the U-shape Dopller spectrum) or three-dimensional (3D, leading to a flat Doppler spectrum) scattering environments. The cascade of channel hops is approximated by a first-order autoregressive (AR(1)) model and is tracked by a standard estimation algorithm, the Kalman Filter (KF). The common method used in the literature to tune the parameter of the AR(1) model is based on a Correlation Matching (CM) criterion. However, for slow fading variations, another criterion based on the off-line Minimization of the Asymptotic Variance (MAV) of the KF is shown to be more appropriate. For both the CM and MAV criteria, this thesis gives analytic justification by providing approximated closed-form expressions of the estimation variance in output of the Kalman filter, and of the optimal AR(1) parameter. The analytical results are calculated for given Doppler frequencies and Signal-to-Noise Ratio for both scattering environments, whatever the number and type of transmission hops (Fixed-to-Mobile or Mobile-to-Mobile). The simulation results show a considerable gain in terms of the Mean Square Error (MSE) of the well tuned Kalman-based channel estimator, especially for the most common scenario of slow-fading channel.
67

Efficient information leakage neutralization on a relay-assisted multi-carrier interference channel

Ho, Zuleita K.-M., Jorswieck, Eduard A., Engelmann, Sabrina 22 November 2013 (has links) (PDF)
In heterogeneous dense networks where spectrum is shared, users privacy remains one of the major challenges. When the receivers are not only interested in their own signals but also in eavesdropping other users' signals, the cross talk becomes information leakage.We propose a novel and efficient secrecy rate enhancing relay strategy EFFIN for information leakage neutralization. The relay matrix is chosen such that the effective leakage channel (spectral and spatial) is zero. Thus, it ensures secrecy regardless of receive processing employed at eavesdroppers and does not rely on wiretaps codes to ensure secrecy, unlike other physical layer security techniques such as artificial noise. EFFIN achieves a higher sum secrecy rate over several state-of-the-art baseline methods.
68

Differential modulation and non-coherent detection in wireless relay networks

2014 January 1900 (has links)
The technique of cooperative communications is finding its way in the next generations of many wireless communication applications. Due to the distributed nature of cooperative networks, acquiring fading channels information for coherent detection is more challenging than in the traditional point-to-point communications. To bypass the requirement of channel information, differential modulation together with non-coherent detection can be deployed. This thesis is concerned with various issues related to differential modulation and non-coherent detection in cooperative networks. Specifically, the thesis examines the behavior and robustness of non-coherent detection in mobile environments (i.e., time-varying channels). The amount of channel variation is related to the normalized Doppler shift which is a function of user’s mobility. The Doppler shift is used to distinguish between slow time-varying (slow-fading) and rapid time-varying (fast-fading) channels. The performance of several important relay topologies, including single-branch and multi-branch dual-hop relaying with/without a direct link that employ amplify-and-forward relaying and two-symbol non-coherent detection, is analyzed. For this purpose, a time-series model is developed for characterizing the time-varying nature of the cascaded channel encountered in amplify-and-forward relaying. Also, for single-branch and multi-branch dual-hop relaying without a direct link, multiple-symbol differential detection is developed. First, for a single-branch dual-hop relaying without a direct link, the performance of two-symbol differential detection in time-varying Rayleigh fading channels is evaluated. It is seen that the performance degrades in rapid time-varying channels. Then, a multiple-symbol differential detection is developed and analyzed to improve the system performance in fast-fading channels. Next, a multi-branch dual-hop relaying with a direct link is considered. The performance of this relay topology using a linear combining method and two-symbol differential detection is examined in time-varying Rayleigh fading channels. New combining weights are proposed and shown to improve the system performance in fast-fading channels. The performance of the simpler selection combining at the destination is also investigated in general time-varying channels. It is illustrated that the selection combining method performs very close to that of the linear combining method. Finally, differential distributed space-time coding is studied for a multi-branch dual-hop relaying network without a direct link. The performance of this network using two-symbol differential detection in terms of diversity over time-varying channels is evaluated. It is seen that the achieved diversity is severely affected by the channel variation. Moreover, a multiple-symbol differential detection is designed to improve the performance of the differential distributed space-time coding in fast-fading channels.
69

Information Leakage Neutralization for the Multi-Antenna Non-Regenerative Relay-Assisted Multi-Carrier Interference Channel

Ho, Zuleita, Jorswieck, Eduard, Engelmann, Sabrina 21 October 2013 (has links) (PDF)
In heterogeneous dense networks where spectrum is shared, users' privacy remains one of the major challenges. On a multi-antenna relay-assisted multi-carrier interference channel, each user shares the spectral and spatial resources with all other users. When the receivers are not only interested in their own signals but also in eavesdropping other users' signals, the cross talk on the spectral and spatial channels becomes information leakage. In this paper, we propose a novel secrecy rate enhancing relay strategy that utilizes both spectral and spatial resources, termed as information leakage neutralization. To this end, the relay matrix is chosen such that the effective channel from the transmitter to the colluding eavesdropper is equal to the negative of the effective channel over the relay to the colluding eavesdropper and thus the information leakage to zero. Interestingly, the optimal relay matrix in general is not block-diagonal which encourages users' encoding over the frequency channels. We proposed two information leakage neutralization strategies, namely efficient information leakage neutralization (EFFIN) and local-optimized information leakage neutralization (LOPTIN). EFFIN provides a simple and efficient design of relay processing matrix and precoding matrices at the transmitters in the scenario of limited power and computational resources. LOPTIN, despite its higher complexity, provides a better sum secrecy rate performance by optimizing the relay processing matrix and the precoding matrices jointly. The proposed methods are shown to improve the sum secrecy rates over several state-of-the-art baseline methods.
70

Efficient information leakage neutralization on a relay-assisted multi-carrier interference channel

Ho, Zuleita K.-M., Jorswieck, Eduard A., Engelmann, Sabrina January 2013 (has links)
In heterogeneous dense networks where spectrum is shared, users privacy remains one of the major challenges. When the receivers are not only interested in their own signals but also in eavesdropping other users' signals, the cross talk becomes information leakage.We propose a novel and efficient secrecy rate enhancing relay strategy EFFIN for information leakage neutralization. The relay matrix is chosen such that the effective leakage channel (spectral and spatial) is zero. Thus, it ensures secrecy regardless of receive processing employed at eavesdroppers and does not rely on wiretaps codes to ensure secrecy, unlike other physical layer security techniques such as artificial noise. EFFIN achieves a higher sum secrecy rate over several state-of-the-art baseline methods.

Page generated in 0.0389 seconds