Spelling suggestions: "subject:"amplitude dde diffusion"" "subject:"amplitude dee diffusion""
1 |
Stabilité et instabilité dans les problèmes inversesIsaev, Mikhail 27 November 2013 (has links) (PDF)
Dans cette thèse nous nous intéressons aux questions de stabilité et d'instabilité dans certains problèmes inverses classiques pour l'équation de Schrödinger et l'équation acoustique en dimension d>=2. Les problèmes considérés sont le problème inverse de Gel'fand de valeurs au bord et les problèmes inverses de diffusion en champ proche et en champ lointain. Les résultats de stabilité et d'instabilité présentés dans cette thèse se complètent mutuellement et contribuent à une meilleure compréhension de la nature des problèmes précités. En particulier, nous démontrons des nouvelles estimations de stabilité globale qui dépendent explicitement de la régularité du coefficient et de l'énergie. En outre, nous considérons le problème inverse de valeurs au bord pour l'équation de Schrödinger à l'énergie fixée avec des mesures frontières représentées comme l'opérateur frontière d'impédance (ou l'opérateur Robin-Robin). Nous démontrons des estimations de stabilité globale pour détermination du potentiel à partir de mesures frontières dans cette représentation d'impédance. De plus, des techniques similaires donnent aussi une procédure de reconstruction globale pour ce problème.
|
2 |
Contribution à la théorie des gaz de fermions froidsAlzetto, Florent 23 September 2011 (has links) (PDF)
Cette thèse traite du problème à N corps dans les gaz de fermions ultra froids. La première partie est dédiée aux collisions à 3 et 4 fermions en interaction de contact dans le vide. Nous montrons comment calculer diagrammatiquement l'amplitude de diffusion dimère-fermion et la longueur de diffusion dimère-dimère. Par un développement en puissances du rapport des masses et à basse énergie, nous obtenons une expression analytique de l'amplitude de diffusion dimère-fermion en onde s dans la limite de grand rapport des masses entre deux espèces. En utilisant la même méthode, nous obtenons un développement analytique de la longueur de diffusion dimère-dimère en onde s dans la limite de grand rapport des masses entre deux espèces. Dans la seconde partie, nous considérons le problème à N corps dans la transition BEC-BCS. Nous dérivons la formule de Tan dans la limite d'interaction de contact, puis nous généralisons ce résultat à des mélanges bosoniques ainsi qu'à 2 dimensions. Nous calculons également l'équation d'état à l'unitarité dans l'approximation de la matrice T en utilisant 3 formules exactes pour l'énergie. Finalement, nous obtenons un développement de l'équation d'état en puissances de la densité dans la limite BEC. Le résultat est obtenu, dans le cas général où les deux espèces ont des masses différentes et sont présentes en quantité différente, en prenant en compte diagrammatiquement les vertex de diffusion à 3 et 4 corps exacts.
|
Page generated in 0.0975 seconds