1 |
Rôle de la région N-terminale 1-16 du peptide amyloïde Abeta dans la deposition amyloïde associée à la maladie d'Alzheimer : Plasticité conformationnelle, modifications liées au vieillissement protéique et interaction avec les ions Zn2+Zirah, Séverine 08 July 2004 (has links) (PDF)
Les dépôts amyloïdes sont des dépôts fibrillaires extracellulaires associés à la maladie d'Alzheimer, dont le constituant principal est le peptide amyloïde (Aβ). La fibrillogenèse d'Aβ s'accompagne d'une transconformation du peptide, depuis une structure secondaire principalement en hélice au voisinage des membranes ou non structurée en milieu aqueux vers une structure en feuillet β. Cette transconformation est couplée à une oligomérisation. Les plaques amyloïdes renferment une quantité importante de cations métalliques, en particulier Zn2+, et le peptide amyloïde y est caractérisé par une grande hétérogénéité de sa partie N-terminale qui présente des troncations et des isomérisations/racémisations. Ces modifications et l'interaction d'Aβ avec les cations ont été proposées comme des facteurs contribuant à la déposition amyloïde.<br />Afin de caractériser ces différents mécanismes moléculaires, nous avons examiné la région N-terminale 1-16 du peptide amyloïde, Aβ(1-16), qui apparaît impliquée dans l'interaction du peptide avec les cations métalliques et renferme plusieurs sites susceptibles de subir des modifications liées au vieillissement protéique. Du fait de son accessibilité au sein des fibrilles amyloïdes, ce domaine d'Aβ constitue une cible thérapeutique potentielle, notamment pour un traitement immunologique.<br />Au cours de ce travail, nous avons mis en évidence la plasticité conformationnelle d'Aβ(1-16) par dichroïsme circulaire (DC) et RMN et nous avons caractérisé la structure qu'adopte ce peptide en milieu aqueux et en milieu mimant un environnement membranaire. Nous avons également identifié les formes produites par vieillissement in vitro. Le complexe Aβ(1-16)/Zn2+ a été examiné par DC, RMN et ESI-MS, ce qui a conduit à établir un modèle d'attachement du cation Zn(II) au peptide Aβ(1-16). Ce modèle implique une coordination tétraédrique de Zn(II), les résidus H6, E11, H13 et H14 étant identifiés comme ligands. Nous avons de plus montré que l'interaction Aβ(1-16)/Zn2+ modifie le profil de vieillissement protéique et exerce un effet agoniste sur la reconnaissance de la région 1-16 d'Aβ par des anticorps spécifiques. La conformation de deux peptides isomères issus du vieillissement d'Aβ(1-16), Aβ(1-16)-L-IsoAsp7 et Aβ(1-16)-D-Asp7 a été examinée par RMN. Un changement conformationnel local est observé dans la région H6-S8 par rapport à Aβ(1-16), mais pas de remaniement conformationnel global. L'étude de l'interaction Aβ(1-16)-L-IsoAsp7/Zn2+ par RMN a suggéré la participation du résidu IsoAsp7 à la coordination du cation Zn(II).<br />Enfin, une étude complémentaire entreprise sur Aβ(1-40) a mis en évidence l'absence de fibrillogenèse du peptide en présence d'ions Zn2+ ou d'anticorps ciblant la région N-terminale d'Aβ, au profit de la formation de différents types d'agrégats. Ces résultats suggèrent que les différentes interactions établies entre la région N-terminale 1-16 d'Aβ et Zn2+ ou des anticorps anti-Aβ inhiberaient la fibrillogenèse du peptide amyloïde pleine longueur.
|
2 |
The combined role of amyloid precursor protein intracellular domain and amyloid-beta on synaptic transmissionProzorov, Arsenii 08 1900 (has links)
Ces dernières années, de nombreuses études ont prouvé que la protéine précurseur de l'amyloïde (APP) joue un rôle clé dans le processus de formation de la mémoire, le développement des connexions synaptiques et la régulation de la force synaptique. L’importance d’APP naît du fait que son clivage protéolytique produit le peptide bêta-amyloïde (Aβ), considéré comme l'un des facteurs cruciaux dans le développement de la maladie d'Alzheimer. Les recherches se sont donc concentrées sur Aβ plutôt que sur le domaine intracellulaire APP (APP-ICD).
Récemment, il a été démontré qu’APP-ICD affecte l'induction de la plasticité synaptique, et Aβ à haute concentration est connu pour induire une dépression synaptique. Ici, nous montrons qu’APP-ICD et Aβ fonctionnent ensemble et induisent une dépression synaptique en modifiant la transmission synaptique par effet additif. L’activation de la caspase-3 clivant APP-ICD est nécessaire pour la dépression à long terme. Nous constatons que l’activation de la caspase-3 et son site de clivage d’APP-ICD, ainsi que le clivage d’APP par la gamma-sécrétase sont nécessaires à la dépression synaptique dépendante d’Aβ. La microglie assure la clairance d’Aβ et certains effets de plasticité. Nous démontrons qu’elle médie partiellement la dépression synaptique dépendante d’Aβ.
Les mécanismes par lesquels APP-ICD et Aβ médient la dépression synaptique ne sont pas connus. Ici, nous discutons de pistes possibles pour la recherche future, notamment des changements dans l'homéostasie du calcium en tant que cible thérapeutique potentielle. Comprendre comment APP-ICD et Aβ travaillent ensemble pour induire une dépression synaptique aiderait à développer de meilleurs traitements pour la maladie d'Alzheimer. / In recent years, more and more evidence has proven that the amyloid precursor protein (APP) plays a key role in the process of memory formation, the development of synaptic connections, and the regulation of synaptic strength. APP rose to prominence since its proteolytic cleavage produces the amyloid-beta (Aβ) peptide, which is believed to be one of the crucial factors in the development of Alzheimer disease. Therefore, most of the research focused on Aβ, while APP intracellular domain (APP-ICD) received much less attention.
In a recent study, APP-ICD was shown to affect the induction of synaptic plasticity, and Aβ at high concentration is known to induce synaptic depression. Here we show that APP-ICD works together with Aβ to induce synaptic depression, meaning they have an additive effect that changes synaptic transmission. Caspase-3 cleaves APP-ICD, and its activation is required for long-term depression. We found that the caspase-3 cleavage site of APP-ICD and caspase-3 activation are needed for Aβ-dependent synaptic depression. We also show that cleavage of APP by gamma-secretase is needed for the effect. Microglia mediate clearance of Aβ as well as some plasticity effects. We demonstrate that microglia partially mediate Aβ-dependent synaptic depression.
The mechanisms of how APP-ICD and Aβ mediate synaptic depression are not known, here, we discuss possible avenues for future research, specifically changes in calcium homeostasis as a potential therapeutic target. Hence, understanding how APP-ICD and Aβ work together to induce synaptic depression would aid in developing better treatments for Alzheimer disease.
|
Page generated in 0.0359 seconds